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Impact Assessment of Various IMU Error
Sources on the Relative Accuracy of

the GNSS/INS Systems
Quan Zhang , Xiaoji Niu , and Chuang Shi

Abstract—GNSS/INS relative accuracy, which character-
izes error variation or instability on different time/spatial
scales, is increasingly required in some new applications,
such as precise surveying and mapping, especially to rep-
resent the details of error variation over the short term
for precise relative measurement. The INS, as an important
GNSS/INS systems component, can provide high navigation
accuracy over the short term, but INS navigation accuracy
decreases with time due to IMU error sources, which might
have a great influence on the GNSS/INS relative accuracy.
This paper focuses on the impact assessmentof IMU errors on
GNSS/INS relative accuracy and proposes a hybrid simulation
scheme based on signal grafting to analyze the impact of each
IMU error on the relative accuracy. Allan variance, as one of the evaluation methods of GNSS/INS relative accuracy,
is applied. The results show that the white noise of the gyroscope and accelerometer is the major factor affecting the
GNSS/INS short-term accuracy, and the backward smoothing solution can further reduce the impact of nonwhite noise.
This work can provide a reference for sensor selection and facilitate the use of low-end IMUs in applications with high
demand for short-term relative accuracy.

Index Terms— GNSS/INS, relative accuracy, IMU error sources, time scales, Allan variance.

I. INTRODUCTION

THE integration of the global navigation satellite system
(GNSS) and inertial navigation system (INS) can make

the utmost of the high-precision long-term performance of
GNSS and excellent short-term performance of INS and
provide continuous and accurate navigation information; thus,
GNSS/INS integration has been widely used in precision
measurements, such as mobile mapping and precise track
measuring [1], [2]. However, it has always been questionable
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why the GNSS/INS systems of centimeter-level positioning
can achieve millimeter precision measurement. In fact, this
kind of precision measurement is essentially a temporal or spa-
tial relative measurement, and it is more concerned with
the relative variation of the navigation error on different
time/spatial scales, not the overall error [3]–[5]. However,
previous research has mainly focused on the centimeter-level
absolute accuracy with dominant components of long-term
error [6], [7]; only a few studies have focused on relative
accuracy on different time/spatial scales [8], while research on
the influencing factors of relative accuracy is relatively less.

The navigation accuracy of GNSS/INS integration is mainly
affected by the GNSS positioning accuracy, inertial mea-
surement unit (IMU) error sources, the optimal estimation
algorithm and the vehicle dynamic. There has been some
research on the effect of GNSS variance and vehicle manoeu-
ver [9], [10]. The suitable GNSS quality obtained by para-
meter tuning can guarantee effective and efficient prediction
of states [11], and vehicle maneuvering is mainly related
to the observability of parameter estimation in the Kalman
filter [12]. The INS can maintain the navigation accuracy over
the short term, but the accuracy deceases with time due to
IMU errors, which might have great influence on the inte-
grated navigation accuracy on a large time scale. Stand-alone
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INS performance analysis was typically based on INS error
dynamic equations to analyze the error propagation caused
by IMU errors over the long term and short term [13], [14],
but the key points considered only the INS drift error, and
further analysis involving GNSS auxiliary information has not
been conducted. Quantitative analysis of the impacts of IMU
quality in GPS/INS deep integration based on the simplified
error dynamics equations was carried out under stationary
conditions and in specific high dynamic with continuous GPS
updates [15], [16], but the focus of this work is mainly the
maneuver-independent velocity error, which is essentially the
drift error caused by IMU errors during the typical GNSS
update interval (e.g., 1 s).

Some approaches for improving the relative accuracy of the
GNSS/INS systems have briefly been given, and parameter
tuning based on the Kalman filter by concretely enlarging the
variance of the GNSS position update (measurement noise
covariance matrix) was carried out to improve the relative
accuracy [17]. The methods of adjusting the GNSS sampling
rate and applying backward smoothing were proposed to
improve the relative accuracy [18]. Gyro noise and residual
drift error were briefly noted as an assistant indices for evaluat-
ing the relative accuracy of the position and orientation system
(POS) [19]. However, there were no prior studies to assess
the effect of IMU errors on GNSS/INS relative accuracy.
The INS position drift error with a GNSS signal-interrupt
was taken as the assessment indicator in the performance
analysis of the GNSS/INS systems [20], and the inertial
attitude determination performance on different time scales
with the assistance of GPS was presented [21]. However,
these indicators can describe only the statistics of the overall
navigation error, and cannot describe the details of the error
relative variation well enough.

A full analytical solution to the complete INS error dynamic
equations is extremely complex, and it is difficult to analyze
theoretically the IMU error propagation in the GNSS/INS
solution considering the impact of GNSS assistance by optimal
estimation, such as Kalman filter. On the one hand, it is feasi-
ble to simply solve the error dynamic equations and estimate
the navigation system performance by taking into account
simple vehicle maneuvers such as remaining stationary, and a
combination of analysis and a simulation strategy is commonly
applied to analyze the navigation accuracy of different grade
systems [13]. On the other hand, the simulation is one common
choice for navigation performance evaluation [14], [22]. The
advantage of simulation method is mainly reflected in the
following points: the vehicle dynamics and IMU data can
be designed according to requirements [23], [24]; one can
evaluate the impact of one certain factor [25]; and it can be
implemented without any hardware cost. However, the existing
simulation methods are either unable to generate the single
error source or separated from field data. Therefore, a hybrid
simulation scheme of signal grafting based on field datasets is
proposed in this paper.

Currently, there is little research on how to analyze and
improve the relative accuracy of the GNSS/INS systems con-
sidering the impact of IMU errors. This paper aims to analyze
the impact of different IMU errors on the GNSS/INS relative

accuracy using the combination of simplified analysis and a
simulation method to determine the major error. It should
be noted that the research on relative accuracy is carried
out with continuous GNSS assistance to satisfy the high
accuracy requirement of precision measurements. This paper
is organized in the following manner: section II gives the
concept of relative accuracy and its evaluation method; the
impact of IMU errors on GNSS/INS relative accuracy is given
based on the simplified IMU error propagation and Kalman
gain in section III; section IV describes the proposed simu-
lation scheme; the data process solution and the discussion
and analysis of the test results are given in section V; and
section VI presents the conclusions.

II. GNSS/INS RELATIVE ACCURACY ON

DIFFERENT TIME SCALES

The term “accuracy” generally denotes a statistical mea-
sure that provides the degree of conformance between the
estimated or measured navigation parameters (e.g., position
and/or velocity and/or attitude) of an object at a given time (or
position) and the reference navigation parameters [26], [27].
Absolute accuracy with the dominance of systematic error
quantifies the closeness of the navigation solution of the
integrated system to the true navigation parameters, and it
commonly involves a component of random error and a
component of systematic error. It is usually expressed by the
root mean square error (RMSE) as follows [28]:

σrmse =
���� 1

n

n�
i=1

(�xi )
2 (1)

where �xi represents the deviation between the measurements
and reference true values, n is the sample number, and
σrmse is the root mean square error. As evident from (1),
the absolute accuracy can give only the overall degree of
dispersion of the navigation error relative to the zero value,
but it cannot show the relative variation between adjacent time
intervals.

A. Concept of GNSS/INS Relative Accuracy

If the variable �xi in (1) is replaced with �xi −�x̄ (�x̄ =
1
n

n�
i=1

�xi , it is the average of the sequence xi , i ∈ [1, n]),

then the calculation of the standard deviation (STD) can be
written as [28]

σstd =
���� 1

n − 1

n�
i=1

(�xi − �x̄)2 (2)

The standard deviation is one of the common expressions
of relative accuracy and it represents the degree of dispersion
relative to the mean value. However, the relative variation
is not limited to being relative to the mean; it can also
refer to the relative relationship between the given epoch or
clusters. Therefore, if the variable �yi is used to represent
the relative variation of the navigation error in a given time
scale τ , then the statistical deviation of the relative variation
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Fig. 1. Comparison between the absolute accuracy and relative
accuracy concepts.

can be expressed as

σ (τ) =
���� 1

n − 1

n�
i=1

(�yi )
2 (3)

where �yi can, but is not limited to, be expressed in the
following expression.

�yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�xm − �xn,

m and n represents the different time

or points;
1

n

n�
k=1

�x̄k − 1

n

2n�
k=n+1

�x̄k,

n represent the length of cluster;
other,

it represents the relative variation in a

given scale.

Here (3) is the common expression of relative accuracy
based on the statistical deviation of the relative variation.
Generally, the relative accuracy focuses on the relationship
of the relative variation of the navigation error at a given
time/spatial scale and is a statistical measure that provides the
degree of relative variation regardless of any error in the true
navigation solution. Relative accuracy, which mainly involves
the component of random error, can reflect the characteristics
of stability, correlation and smoothness of the navigation error.

Fig. 1 gives the different statistical forms, including the
absolute and relative statistical values, which represent the
total variation of the navigation error and the relative variation
of the navigation errors, respectively. The absolute accuracy
is achieved by analyzing the original navigation errors by the
statistical method, which represents the difference between
measured or estimated values x̂ and the reference or true
values x. Hence, the study object of the absolute accuracy
is the total variation of the navigation error itself. However,
there is a different study object for the relative accuracy, which
is to analyze the relative variation i �yi of navigation error
i �xi . The acquisition of the relative variation depends on
specific application requirements, and this paper presents an
expression based on Allan variance in section II.B.

It is important and convenient to clearly define the absolute
accuracy and the relative accuracy since in most cases the
navigation error is composed of a slow varying signal with

Fig. 2. Concept of relative accuracy in terms of Allan deviation.

almost no noise, while in some applications, it is the accuracy
of the change in navigation that is most important (such as
that in the precision mobile mapping) [2], [3].

B. Allan Variance

Allan variance (or the corresponding square root, the Allan
deviation), as one of evaluation method of relative accuracy,
is a method of representing the root mean square (RMS)
random error as a function of the average time, which is widely
used to characterize the instabilities of an oscillator or time
series [29]–[31]. It can give an idea of how stable on average
an oscillator or time series is over a given time scale. The
formula of the Allan deviation (ADEV) can be expressed as
follows [8]:

σ (τ)allan =
�����

1

2 (N − 1)

N−1�
k=1

(ȳk+1 − ȳk)
2

�
(4)

where ȳ is the average of the sample data sequence y in a
specific time interval τ , which is the time scale (from short
term to long term); σ (τ)allan is the corresponding Allan
deviation shown in the Allan variance plot; and N is the total
number of consecutive data points.

Fig.2 gives the representations of relative accuracy in terms
of the Allan deviation. The “average sequence” is composed of
the average of the navigation errors in the specified cluster that
weaken or eliminate the high-frequency noise. The “difference
sequence” represents the relative variation between adjacent
clusters on different time scales, and it is applied as an input
of the variance analysis to show the statistical values of the
relative variation.

According to the length of the time cluster, GNSS/INS
relative accuracy can be categorized into short-term accuracy
(e.g., time scale is less than 1 s) and long-term accuracy
(e.g., time scale is more than 10 s). There is an obvious
difference between the short-term accuracy of the INS and
the short-term relative accuracy of GNSS/INS integration.
The former refers to the divergence of the stand-alone INS
navigation error with time affected by IMU errors, while
the latter represents the relative accuracy on a short time
scale (namely, short-term stability or smoothness). However,
there is a close relationship between them because the inte-
grated navigation accuracy depends on the performance of the
inertial sensors. Some research works related to the GNSS/INS
relative accuracy on different time scales focused on using the
Allan variance method to evaluate the short-term accuracy [8].
Hence, this paper will apply Allan variance to analyze different
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impacts of the IMU errors on the relative accuracy of the
GNSS/INS systems.

III. IMPACT ANALYSIS OF IMU ERROR SOURCES ON

GNSS/INS RELATIVE ACCURACY

IMU errors are important factors of the INS drift error that
influence the relative accuracy of GNSS/INS integration. The
correction of navigation errors aided by GNSS assistance will
be reduced if the INS drift error over a short time is small
(i.e., the INS short-term accuracy is good), which can guar-
antee the stability or smoothness of the integrated navigation
error and thus improve the short-term relative accuracy of the
GNSS/INS systems. Therefore, the propagation of IMU errors
based on the simplified INS error dynamic equations is briefly
introduced first in this section. Then, the effect of IMU errors
on GNSS/INS relative accuracy based on the Kalman gain is
illustrated to show the major factors of GNSS/INS relative
accuracy.

A. Propagation Analysis of IMU Errors through Simplified
INS Error Dynamic Equations

The propagation of IMU errors in a given frame can be
defined by the set of coupled differential equations based
on inertial navigation equations. The phi-angle error dynamic
equations with respect to the navigation reference frame can
be written as follows [13], [32]:

δ ṙn = F · δrn + δvn

δv̇n = δ f n + f n × φ − 
ωn

ie + ωn
in

� × δvn

+ vn × 
δωn

ie + δωn
in

� + δgn

φ̇ = −ωn
in × φ − δωn

ib + δωn
in (5)

where all parameters are with respect to the navigation frame.
All symbols are defined as follows: F is the coefficient matrix
of the position error; δrn , δvn and φ represent the position,
velocity and attitude error in the navigation frame respectively,
with δ ṙn , δv̇n and φ̇ being the corresponding time derivatives;
ωn

en , ωn
ie and ωn

in respectively represent the angular rate of the
navigation frame relative to the earth frame, that of the earth
frame relative to the inertial frame and that of the navigation
frame relative to the inertial frame, respectively, with δωn

en ,
δωn

ie and δωn
in being the corresponding angular rate errors;

f n is the specific force in the navigation frame; and δgn is
the normal gravity error in the local position. δ f n and δωn

in
represent the sensor errors of accelerometers and gyros, which
mainly include the bias, scale factor and white noise. In this
paper, vectors are denotes as bold lower case italic letters,
matrices are denoted as bold upper case italic letters, and
scalars are denoted as upper or lower case italic letters.

Here, the uncertainty of the sensors can be expressed as

δ f = b f + S f · f + ε f

δω = bω + Sω · ω + εω (6)

where b f and bω are residual biases of the accelerometers
and gyros respectively, S f and Sω represent the diagonal
matrix (the corresponding vector forms are denoted as s f

and sω) of the residual scale factors of the accelerometers and

gyros respectively. ε f and εω are the white noise of the
accelerometers and gyros, respectively.

A complete analytical solution to the error dynamic equa-
tions is complicated, and it is extremely difficult to analyze
the error propagation directly. Considering that the periods of
independent INS navigation in GNSS/INS integration are only
approximately several minutes or even seconds and that the
errors caused by some terms such as the Coriolis, the gravity
and the rotational angular rates are relatively small, and
because the effect of IMU errors on navigation accuracy is
the focus of this work, the error dynamic equations can be
reduced to

δ ṙn = δvn

δv̇n = δ f n + f n × φ

φ̇ = −δωn
ib (7)

According to the simplified error dynamic equations,
the angular error δθ (t) and position error δrω (t) related to
time caused by the uncompensated gyro bias of a single
direction (e.g., roll or pitch gyro) bω can be further reduced
to the following form for a short time period [11]:

δθ (t) =
�

bωdt = bω · t (8)

δrω (t) =
�

vdt =
�

1

2
bω · gt2dt = 1

6
bω · gt3 (9)

where g is the gravitational acceleration and t is the duration
of integration. Similarly, according to the simplified velocity
and position error dynamic equations, the position error δr f (t)
proportional to time caused by uncompensated accelerometer
bias b f can be expressed as [11]

δr f =
�

vdt =
�

b f · tdt = 1

2
b f · t2 (10)

Unlike the error propagation of sensor biases, the simplified
error dynamic equations cannot be applied to the random walk
error growth, and it is a function of the standard deviation
of the output noise, the sample frequency and the duration
of integration [33]. The relationship between the standard
deviation of angular error σδθ and that of gyro noise σεω

can be obtained by taking the expected results of the discrete
simplified attitude error dynamic equation shown in (7) over a
short time, and the standard deviation of the attitude error
caused by the gyro noise is simplified as a function of
time [34].

σδθ = σεω

�
Tst (11)

where Ts = 1
�

fs , with fs being the sample frequency.
Similarly, the integration of accelerometer noise σε f and

gyro noise σεω produces the velocity error σδv and the position
error σδr , and the relationship between them can be obtained
by taking the expected simplified velocity and position error
dynamic equation shown in (7). Here, the stationary condition
needs to be assumed, and the noise of the gyros and accelerom-
eters are independent. Additionally, assuming that there is no
correlaiton between the acceleromter bias and attitude error.
In this case, inserting f n ≈ �

0 0 −g
�T into the simplified
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TABLE I
SUMMARY OF IMPACT OF IMU ERROR ON

INS POSITION PERFORMANCE

velocity error dynamic equation, the standard deviation of the
velocity and position error (including the single horizontal and
vertical direction) caused by the white noise of the gyroscope
and accelerometer can be approximatively expressed in the
following forms (see Appendix):

σδvhorizontal =
�

σ 2
ε f

Tst + 1

2
g2σ 2

εω
T 2

s t2, σδvvertical =σε f

�
Tst

(12)

σδrhorizontal = Tst

�
1

2
σ 2

ε f
+ 1

6
g2σ 2

εω
Tst, σδrvertical =

√
2

2
σε f Ts t

(13)

Since the scale factor is a maneuver -dependent error,
we do not analyze its error propagation in this paper. Table I
summaries the growth of position error derived by different
IMU errors based on the error propagation formulas (9), (10),
(12) and (13). The position drift error caused by the bias, espe-
cially the gyro bias, diverges quickly with time. However, the
impact of IMU errors on the short term accuracy or long term
accuracy depends on the specific parameters configuration.

Here, a typical parameter configuration of MEMS IMU (the
configuration is: data rate of 100Hz, gyro bias of 300◦/h,
gyro white noise of 3◦/

√
h, accelerometer bias of 3000 mGal,

and accelerometer white noise of 0.5m/s/
√

h) is taken as an
example to quantify the impact level of IMU error on position
drift error. Fig.3 shows the INS horizontal position drift error
in the given configuration.

It can be seen from Fig. 3 that IMU bias produces an
obvious large short-term and long-term position error for
the stand-alone INS navigation solution. Moreover, the gyro
bias dominates the long-term position accuracy, while the
accelerometer bias has a major impact on the short-term
position accuracy as shown in the enlargement of Fig. 3. The
white noise has limited impact on the long-term accuracy and
short-term accuracy due to the high-frequency IMU data rate.

B. Impact Analysis of IMU Errors on GNSS/INS Relative
Accuracy through Kalman Gain

The Kalman filter is a common optimal estimation method
for integrating GNSS and INS measurements. Here, only

Fig. 3. The INS horizontal position drift error during the short term (< 1s)
and long term (> 1s) in a given typical MEMS IMU configuration.

the prediction equation of the covariance matrix and the
calculation of Kalman gain in a discrete form of the Kalman
filter are presented to illustrate the effect of IMU errors on
the navigation accuracy; more details on Kalman Filter are
available in many articles [35]. This part mainly analyzes the
impact of IMU errors on the GNSS/INS relative accuracy
with continuous GNSS assistance when the filtering reaches a
steady state. The prediction equation of the covariance matrix
can be expressed as follows:

Pk/k−1 = �k−1 Pk−1/k−1�
T
k−1 + Qk (14)

where Pk/k−1 is the predicted estimate of the covari-
ance matrix, �k−1 is the state transition matrix, Qk is the
covariance matrix of system process noise, which is generally
assumed to be white noise, and the k − 1 represents the time,
the T represents the transpose of a matrix.

It can be seen that the predicted covariance matrix Pk/k−1
is related to the system noise covariance matrix Qk and the
previous updated or predicted covariance matrix Pk−1/k−1 that
basically depends on the initial covariance matrix P0 and Qk .
P0 mainly affects the initial convergence and has little influ-
ence on the state estimates if it is given a reasonable value.
Qk is the main factor of Pk/k−1 in addition to affecting the
convergence characteristics of the state variables.

The Kalman gain K k is the relative weight provided for the
measurement and the predicted state estimate. With a low gain,
the filter places more weight on the predictions. In contrast,
the filter follows the current measurements more closely. The
equation of the Kalman gain in fraction form is

K k = Pk/k−1 HT
k

Hk Pk/k−1 HT
k + Rk

(15)

where Hk is the measurement design matrix and Rk is the
covariance matrix of the measurement noise.

Because the predicted covariance matrix is strongly corre-
lated with the system noise covariance matrix as shown in (14),
substitute (14) into (15) to yield

K k =

�k−1 Pk−1/k−1�

T
k−1 + Qk

�
HT

k

Hk

�k−1 Pk−1/k−1�

T
k−1 + Qk

�
HT

k + Rk
(16)
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TABLE II
IMPACT OF THE MATRIX OF SYSTEM NOISE ON RELATIVE ACCURACY

It is clear that K k is up to Rk and Qk . Certainly, in this
case, we assume that the measurement noise is reasonable and
reliable; thus, Qk , which defines how well the prediction
can be trusted, is critical for achieving practical results by
tuning the weight between the measurement and the predicted
state estimate. As shown in Table II, the current measurement
is trusted increasingly less as Qk approaches zero, and the
navigation correction aided by GNSS will be reduced to keep
the estimated navigation results smooth, whereas the current
measurement is trusted increasingly more as Qk approaches
infinity, and the navigation correction aided by GNSS will be
enhanced to break the smoothness of the estimated navigation
results. The smaller the IMU noise, the smaller the Qk matrix,
and the smaller the jumps by GNSS corrections. At the
estimated navigation results, while a low gain close to zero
will smooth out noise. The errors of the inertial sensors are
defined by white noise within the system noise covariance
matrix; thus, the IMU white noise will affect the smoothness
of the estimated navigation results.

In addition, the IMU bias and scale can be estimated and
compensated effectively by error modeling in the GNSS/INS
integration when the Kalman filter reaches a steady state.
There are only the residual bias and scale factor producing
the navigation drift error over the short term (e.g. 1 s, before
the next GNSS comes), and the corresponding navigation drift
errors during one second are relatively small.

Here, we consider a simple example of a typical tactical-
grade IMU. Assuming the white noise of gyros is 0.1◦/

√
h

and the residual bias error of gyro is 0.5◦/h, the corre-
sponding attitude drift errors during one second are 0.0017◦
and 0.00014◦, respectively, according to (11) and (8). The
former is 10 times larger than the latter, which means that the
IMU noises dominate the short-term errors of the navigation
result. Moreover, the IMU white noise cannot be modeled
and compensated, and it not only produces the drift INS
navigation errors (perhaps this will not be obvious over a
short time) but also has an effect on the smoothness of the
estimated navigation results by reflecting the Q matrix of
Kalman filter. Therefore, the IMU white noise will be the
key factor of the GNSS/INS relative accuracy especially the
short-term accuracy.

IV. HYBRID SIMULATION SCHEME

The proposed hybrid simulation scheme is a testing method
that generates IMU data containing only one type of error
source through signal grafting. The hybrid simulation method

Fig. 4. Schematic diagram of the proposed hybrid simulation.

TABLE III
SPECIFICATIONS OF DIFFERENT-GRADE IMUS

takes the high-grade IMU data collected in the field test
as basic data (i.e., true values of the IMU output), adds
(or so-called grafts) each simulated IMU error (e.g., bias,
scale factor, or noise) to the basic IMU data individually and
processes the grafted IMU data using the GNSS/INS solution
to obtain the different integrated navigation errors based on
each IMU error. Fig. 4 shows the schematic diagram of the
proposed hybrid simulation. It should be noted that the bias
error and scale factor error can be modeled and augmented
to the Kaman filter for on line estimation; thus, there is the
feedback correction of IMU errors. However, the white noise
cannot be estimated online due to the high-frequency variation.

This scheme of the proposed hybrid simulation can be
described in detail as follows:

(a) Take real navigation-grade IMU measurements (their
specifications are listed in Table III) as the basic data (i.e., true
values of the IMU output), and regard its post-processed
GNSS/INS solution as the “reference true values”.
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(b) Simulate different types of IMU errors, including the
bias, scale factor and white noise of gyros and accelerometers,
and model the bias and scale factor as the 1st Gauss-Markov
process.

ẏ = − 1

τ
y + ω (17)

where τ is the correlation time of a random process y, and ω is
the corresponding driving white noise.

The specifications of different-grade IMUs (including tac-
tical and micro-electro-mechanical system (MEMS)) can be
found in Table III. Here, “Ref. Sys.” represents the reference
system, as mentioned in (a), “Sim. Sys. #1” represents the sim-
ulated tactical-grade system, and “Sim. Sys. #2” represents the
simulated MEMS-grade system.

(c) Add the simulated error to the basic data as expressed
in (18); then, process these datasets in the mode of forward
filtering and backward smoothing.

f 1 = f + b f ; f 2 = 
I + S f

� · f ; f 3 = f + ε f

ω1 = ω + bω; ω2 = (I + Sω) · ω; ω3 = ω + εω (18)

where f and ω are the basic vectors of acceleration and
angular rate, respectively; the numeral subscripts represent the
simulated data with each IMU error in turn; I represents the
identity matrix.

(d) Add all simulated errors to the basic data, as expressed
in (19), and then process the dataset in the mode of for-
ward filtering and backward smoothing. The error parameters
used in the data processing are consistent with those in the
error simulation.

f total = f + b f + 
I + S f

� · f + ε f

ωtotal = ω + bω + (I + Sω) · ω + εω (19)

where f total and ωtotal represent the simulated IMU data
containing all IMU errors.

For the data acquisition in the field test, we cannot collect
the output of gyros and accelerometers, which contains only
one kind of IMU error. Here, the proposed hybrid simu-
lation, similar to the adjoint simulation or signal grafting
scheme, is utilized to determine the contribution of each IMU
error to the GNSS/INS relative accuracy at a given time
scale. Different variance analysis methods (especially Allan
variance), as shown in Fig. 4, are applied to compare and
analyze the impact of each IMU error on the GNSS/INS nav-
igation accuracy, especially the short-term relative accuracy.
This strategy can show the impact level of each IMU error
on the relative accuracy by contributing to the increase in
the values of the Allan deviation of the navigation errors.
Next, a detailed description of the results and the discussion
are given.

V. RESULTS AND DISCUSSION

To analyze the impact of each IMU error on the relative
accuracy of the GNSS/INS system, a field test was conducted
in the open sky by the Mobile Multi-Sensor System (MMSS)
group at the University of Calgary to obtain the basic data used
in the hybrid simulation scheme. The GNSS/INS system with a

Fig. 5. Description of field test conditions: (a) vehicle velocity plot and
(b) GPS satellite sky plot.

navigation-grade IMU was used as the reference system and to
provide the basic IMU data, with a data rate of 200 Hz. A high-
accuracy GNSS post-processed kinematic (PPK) solution with
a GNSS data rate of 1 Hz and a dual frequency L1/L2 carrier
phase was applied for the GNSS data processing to ensure
high-precision GNSS positioning and reduce the effect of
measurement noise on the GNSS/INS integrated navigation
accuracy. Fig. 5 gives the velocity plots and GPS satellite
sky plot used to describe the vehicle dynamics and the open-
sky environment. There are many turns and U-turns to ensure
enough dynamic, and the number of visible GPS satellites is
approximately 9.

The GNSS/INS integration approach was applied to evaluate
the impact of IMU errors on the relative accuracy because the
signal quality of GNSS satellites in open-sky environment is
relatively good. The system state model of the approach can be
expressed as δx = �

δr δv φ bω b f sω s f
�T

, which is given
by navigation error states (including position error, velocity
error and attitude error) and IMU error states (including the
bias and scale factor of gyros and accelerometers) [36]. RTS
backward smoothing, which is a well-known fixed-interval
backward smoothing method in post-processed GNSS/INS
solution to improve the estimated accuracy [37], [38], was
applied to further analyze the effect of IMU errors on the
relative accuracy of GNSS/INS. Fig. 6 gives the flow chart of
GNSS/INS integrated data processing (that is the GNSS/INS
solution shown in Fig. 4), and here the difference of the
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TABLE IV
STATISTICAL VALUES (RMSE) OF THE NAVIGATION ERROR BASED ON DIFFERENT

IMU ERRORS OF THE TACTICAL GRADE USING FORWARD FILTERING

Fig. 6. Flow chart of GNSS and IMU data processing in the loosely-
coupled mode.

position and velocity between INS navigation solution and
GNSS PPK solution is the input to the Kalman filter.

A. Analysis of Tactical-Grade IMU in the Kalman
Filter Mode

Table IV lists the traditional statistical values (e.g., RMSE)
of the navigation errors based on different IMU errors of the
tactical grade in the forward filtering mode. It can be seen
that the position errors and velocity errors caused by different
IMU errors are basically at the same level, and there is no
significant difference between them; the roll and pitch errors
caused by gyro white noise are more than 0.002◦, which is
more than 2 times that caused by other types of IMU errors;
the gyro errors, especially bias and white noise, are the major
contributors of the yaw error because there is approximately
2 times as much difference between the navigation results. The
traditional statistics mainly reflect the overall variation of the
navigation errors, and they cannot give the relative variation
on different time scales.

Fig. 7 shows Allan variance plots of tactical-grade
GNSS/INS navigation errors (including the three-dimensional
position, velocity and attitude from top to bottom) with
different types of IMU errors in the forward filtering mode.
The horizontal axis represents the different time scales, and the
vertical axis represents the Allan deviation of navigation errors

corresponding to each time scale. Here, “short-term” mainly
refers to the range from 0.005 s to 1.0 s of the time scale,
as marked in Fig. 7, while “long-term” mainly means that the
time scale is more than 10 s. It is clear from Fig. 7 that the
long-term error dominates the overall error because the Allan
deviations of the long-term time scales are obviously larger
than that of the short-term time scales, and the performance
of the long-term error is basically consistent with the statistical
values shown in Table IV.

To quantify the impact of each IMU errors on the short-term
accuracy, the impact ratio can be defined as

ratio = 1

n

n�
i=1

�
ADEVone

ADEVall

�
i

(20)

where ADEVone represents the Allan deviation of navigation
error based on the single IMU error, ADEVall represents the
Allan deviation of navigation error based on all IMU errors,
n is the total number of Allan deviation from 0.005 s to 1 s, i
is the i− th epoch of the corresponding cluster time. Here the
impact ratio is defined as the mean value of Allan deviation
based on the single IMU error relative to that based on all IMU
errors over the short term range, and it can show the overall
impact level of IMU error on short-term relative accuracy.
The closer the ratio is to 1, the greater the impact of the
corresponding IMU error on relative accuracy.

Fig. 8 shows the ratio of the Allan deviations based on
each IMU errors for tactical-grade GNSS/INS systems in the
forward filtering mode. It can be seen that there is no obvious
difference between the short-term horizontal position accuracy
caused by different types of IMU errors because the difference
in the ratios is not significant. Accelerometer errors, especially
the white noise, are the main factor of the short-term vertical
position accuracy.

For the short-term accuracy of velocity, the ratio based on
accelerometer white noise is more than 0.8, which is approxi-
mately 5 times larger than those based on other types of IMU
errors, a feature that is not shown in the traditional statistics
listed in Table IV. Gyro errors have no prominent influence
on the vertical velocity accuracy because the corresponding
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Fig. 7. Allan deviation (ADEV) plots of tactical-grade GNSS/INS navigation errors using forward filtering. From top to bottom on the figure, the plots
are, in order, three-dimensional position, velocity and attitude; the marked range from 0.005 s to 1 s is the “short-term” being considered.

Fig. 8. The ratio of the Allan deviations based on each IMU errors for
tactical-grade GNSS/INS systems in the forward filtering mode.

ratios are less than 0.1 and the coupling between the vertical
velocity and gyro errors is weak.

For the short-term accuracy of horizontal attitude, the ratio
based on gyro white noise is approximately 0.9, which is
approximately 10 times larger than those based on other
types of IMU errors. There is no significant difference in
the ratio of the heading error corresponding to gyro errors,
but the short-term yaw accuracy is obviously influenced by
scale factor of gyros due to weak observability of gyro errors
along the yaw direction, this is also a different performance
from the statistical results representing the absolute accuracy
with the dominance of long-term error.

B. Analysis of Tactical-Grade IMU in the Backward
Smoothing Mode

Table V lists the traditional statistical values (e.g., RMSE)
of the navigation errors based on different IMU errors of the
tactical grade in the backward smoothing mode. Compared to
Table IV, the backward smoothing improves the navigation

absolute accuracy because the estimated accuracy is improved
by utilizing all the measurements. It can be seen that the
white noise of gyros and accelerometers obviously affects
the impact on the horizontal position and velocity errors;
there is more than 2 times as much difference between the
navigation results. The attitude errors caused by gyro white
noise are more than 2 times larger those that caused by
other types of IMU errors. Although backward smoothing can
improve the estimation accuracy of the bias and scale factor
that can be compensated in the GNSS/INS solution, it yields
little reduction of the navigation errors caused by IMU white
noise.

Fig. 9 shows Allan variance plots of tactical-grade
GNSS/INS navigation errors with different types of IMU
errors in the backward smoothing mode. Compared to Fig. 7,
the impact of IMU white noise on the short-term accuracy
is made obvious by utilizing the backward smoothing mode,
which improved the estimation accuracy of the navigation
errors and IMU bias and scale factor that are compensated
well. From the values of the Allan deviation at the large
time scale (e.g., more than 10 s), the long-term horizontal
accuracy (including position, velocity and attitude) is sig-
nificantly affected by the IMU white noise and accelerom-
eter bias, while the long-term vertical position and velocity
accuracy are affected by the accelerometer errors. The
long-term yaw accuracy is significantly affected by the gyro
errors, which is consistent with the statistical results shown
in Table V

Fig. 10 shows the ratio results in the short term corre-
sponding to Fig. 9. For the short-term accuracy of position,
the accelerometer white noise is the main factor because the
corresponding ratio is more than 0.9. The gyro white noise has
some effect on the short-term accuracy of horizontal position
because the corresponding ratio is more than 0.65. Gyro errors
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TABLE V
STATISTICAL VALUES (RMSE) OF THE NAVIGATION ERROR BASED ON DIFFERENT

IMU ERRORS OF THE TACTICAL GRADE USING BACKWARD SMOOTHING

Fig. 9. Allan deviation (ADEV) plots of tactical-grade GNSS/INS navigation errors using backward smoothing. From top to bottom on the figure,
the plots are, in order, three-dimensional position, velocity and attitude; the marked range from 0.005 s to 1 s is the “short-term” being considered.

have no prominent influence on the vertical position accuracy
because the corresponding ratios are less than 0.2.

For the short-term accuracy of velocity, the ratio based on
accelerometer white noise is approximately 1, which is more
than 10 times larger than those based on other types of IMU
errors. For the short-term accuracy of attitude, the gyro white
noise becomes the major factor because the corresponding
ratio is approximately 1, which is approximately 10 times
larger than those based on other types of IMU errors.

The above analysis results of tactical-grade IMUs based
on the traditional statistics and Allan variance show that the
traditional statistics cannot show the relative accuracy on
different time scales of the GNSS/INS systems, especially
the short-term accuracy. IMU white noise is the major factor
affecting the short-term accuracy of GNSS/INS systems, and

the backward smoothing solution can reduce the influence
of the bias and scale factor which can be estimated and
compensated by augmenting them as states in the integration
solution. Next, considering that the short-term accuracy is the
focus of this paper, we apply only the ratio plot of Allan
deviation to further evaluate the impact of MEMS IMU errors
on the short-term accuracy of the GNSS/INS systems to verify
the consistency.

C. Analysis of MEMS IMU
Fig. 11 shows the ratio of the Allan deviations based on

each IMU errors for MEMS-grade GNSS/INS systems in the
forward filtering mode. For the short-term accuracy of position
and velocity, the white noise and bias of accelerometer have a
comparatively larger impact because the corresponding ratios
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Fig. 10. The ratio of the Allan deviations based on each IMU errors for
tactical-grade GNSS/INS systems in the backward smoothing mode.

Fig. 11. The ratio of the Allan deviations based on each IMU errors for
MEMS-grade GNSS/INS systems in the forward filtering mode.

are more than 0.7. The ratios based on gyro white noise are
approximately 0.6 and 0.4, which indicates that gyro white
noise yields a short-term position and velocity error. Gyro
errors have almost no influence on the vertical component
because of their weak coupling, and the corresponding ratios
are less than 0.1.

For the short-term accuracy of horizontal attitude,
the impact of the gyro white noise is relatively obvious, there
is an approximately 10-fold ratio difference compared with
other types of IMU errors. The gyro bias has a slight impact
on the horizontal attitude. Gyro errors, especially the white
noise, are the main factor of the short-term heading accuracy.
Compared to the results of tactical-grade IMU shown in Fig. 8,
although the white noise of gyro and accelerometer remains
the dominant position, the impact of nonwhite noise, such as
the bias, is prominent, as residual MEMS IMU errors still
produce a large navigation drift error.

Fig. 12 shows the ratio of the Allan deviations based on
each IMU errors for MEMS-grade GNSS/INS systems in the
backward smoothing mode. It is clear that the accelerometer
white noise has a relatively larger impact on the short-term
accuracy of position and velocity, and there is a ratio that is
close to 1 and is more than 2-fold difference compared with
other types of IMU errors. The gyro white noise has certain
degree influence on the horizontal component. The vertical
component is mainly influenced by accelerometer errors. The
gyro white noise is the major factor of the short-term attitude
accuracy because the corresponding ratio is approximately 1,
which is more than 10 times larger than that of other types

Fig. 12. The ratio of the Allan deviations based on each IMU errors for
MEMS-grade GNSS/INS systems in the backward smoothing mode.

of IMU errors. Compared to Fig. 11, the backward smoothing
solution reduces the impact of the bias and scale factor by
improving their estimation accuracy in GNSS/INS solution to
further highlight the impact of white noise on the short-term
accuracy.

According to the analysis of tactical-grade and MEMS-
grade IMUs, the white noise of gyros and accelerometers
has a significant impact on the short-term accuracy of the
GNSS/INS systems. The backward smoothing solution can
reduce the impact of the bias and scale factor because they
can be estimated better and compensated by error modeling in
the GNSS/INS integration solution. For position and velocity,
the absolute accuracy dominated by long-term errors mainly
depends on the GNSS; thus, the change caused by different
IMU errors is not obvious.

VI. CONCLUSIONS

A concrete expression of the relative accuracy was proposed
to show the relative variation between adjacent clusters in a
given time scale for precision measurements. The impact of
the IMU error on the relative accuracy was analyzed through
simplified INS error propagation and the Kalman gain to
determine the difference and relation between the INS short-
term accuracy and GNSS/INS relative accuracy. To analyze
the performance of each IMU error, a hybrid simulation based
on signal grafting was proposed to generate the IMU data
dominated by one type of error.

Field test results show that the Allan deviations of the
position error caused by different IMU errors are all less
than 0.01 m in the short term scale, this can answer why
the centimeter-level positioning systems can achieve the
millimeter-level precision measurement. The IMU white noise
is the key factor of the short-term accuracy because its ratio
is more than 2 times larger than those based on other types
of IMU errors, especially in the backward smoothing mode
which can make the ratio of Allan deviations close to 1. The
conclusions of this paper can provide guidance for accuracy
improvement and promote the utilization of MEMS IMUs in
applications with high demand for short-term relative accuracy.
The next step is to find ways to enhance the attitude accuracy
and reliability to reduce the impact of IMU errors on the
long-term accuracy.
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APPENDIX

① The differential form is δv̇n = δ f n + f n × φ;
② The integration of the differential form results in

δvn =
� 

δ f n + f n × φ
�
dt (A.1)

③ The discrete form is expressed as

δvn
k =δvn

k−1 + 
δ f n + f n ×φ

�
Ts =

k�
i=1


δ f n + f n ×φ

�
i Ts

(A.2)

④ Here, the north velocity error is taken as an example, and
f n ≈ �

0 0 −g
�T . Take the expected value of both equation

results in

E
�
δvn

north


δvn

north

�T
�

= E

⎡
⎣�
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i=1
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x + gφy
�
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i=1


δ f n

x + gφy
�
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�T ⎤
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= T 2
s

k�
i=1

E
�

δ f n
x + gφy

�
i


δ f n

x + gφy
�T

i

�
(A.3)

⑤ There is no correlaiton between acceleromter bias
and attitude error, that is, E

�
δ f n


φy

�T
�

= 0. Here,

E
�
δ f n (δ f n)T

�
= σ 2

ε f
, σδθ = σεω

√
Tst (Eq. (11)), Tsk = t (Ts

is the sampling interval, k is the number of discrete series,
and t is the total integration time). Thus, the expected value
of north velocity error is

σ 2
δvnorth

= T 2
s

k�
i=1

�
σ 2

ε f
+ g2σ 2

εω
T 2

s i
�

= T 2
s σ 2

ε f
k + T 4

s g2σ 2
εω

· 1

2

�
k2 + k

�
(A.4)

That is,

σδvnorth =
�

σ 2
ε f

Ts t + 1

2
g2σ 2

εω
T 2

s


t2 + Tst

�
(A.5)

The higher order term (i.e., 3rd order) of Ts can be ignored
because of the high data rate, and the above equations result
in the following approximation

σδvnorth =
�

σ 2
ε f

Ts t + 1

2
g2σ 2

εω
T 2

s t2 (A.6)

⑥ Here, f n ≈ �
0 0 −g

�T , so there is no relationship
between the vertical velocity error and gyro noise, and the
expected value of vertical velocity error is

σδvvertical =
�

σ 2
ε f

Ts t = σε f

�
Tst (A.7)

Similarly, the standard deviation of the position error
(taking the north position error as an exmaple) can be

deduced as follows:

E
�
δrn

north


δrn

north

�T
�

= T 2
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i=1
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�
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δvn
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σ 2
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s
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�
σ 2

ε f
T 2
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2
g2σ 2

εω
T 4

s i2
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(A.8)

The expected value of north position error is

σ 2
δrnorth

=T 4
s σ 2

ε f
· 1

2

�
k2+k

�
+ 1

2
g2σ 2

εω
T 6

s

�
1

3
k3+ 1

2
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1

6
k

�
(A.9)

The above equations result in the following approximation.

σδrnorth = Tst

�
1

2
σ 2

ε f
+ 1

6
g2σ 2

εω
Tst (A.10)

The standard deviation of the vertical position error is

σδrvertical =
√

2

2
σε f Tst (A.11)
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