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Magnetic Field-Enhanced Learning-Based Inertial
Odometry for Indoor Pedestrian

Yan Wang, Jian Kuang, You Li, and Xiaoji Niu

Abstract—Pedestrian dead-reckoning (PDR) is a vital tech-
nique in pedestrian localization. Compared with traditional PDR,
learning-based inertial odometry has the advantages of smaller
position drift and is insensitive to pedestrian motion patterns.
However, the heading drift of the trajectory is still the dominant
error source for the position error drift in these methods. This
study focuses on providing a pedestrian trajectory estimation
method with low drift by properly fusing learned-based inertial
odometry and magnetometer measurements under an indoor sce-
nario containing significant magnetic field disturbance. The pro-
posed method reduces the impact of magnetic field disturbance by
adopting a long-term average magnetic vector, which is far more
stable than using local magnetic vectors. Meanwhile, the proposed
method can estimate the magnetometer bias online rather than
depending on pre-calibrated magnetometer measurements. The
test results show that the proposed method can obtain superior
positioning performance using uncalibrated raw magnetometer
data compared to other methods, even using calibrated mag-
netometer data. Simultaneously, this method achieves a balance
between algorithm accuracy and efficiency.

Index Terms—Pedestrian Dead Reckoning (PDR), Inertial
Navigation, AI-Based Methods, location-based services (LBS)
Magnetic Field

I. INTRODUCTION

Pedestrian positioning plays a vital role in the Internet
of Things (IoT), location-based services (LBS), and aug-
mented reality (AR). The existing high-accuracy positioning
techniques generally rely on LiDAR, cameras, and wireless
sensors. LiDAR-based simultaneous localization and mapping
(SLAM) [1] [2] which relies on professional equipment, can
provide stable and reliable high-precision positioning. How-
ever, LiDAR is heavy and power-hungry and is not suitable for
pedestrians. Camera-based SLAM includes visual odometry
(VO) [3] and visual-inertial odometry (VIO) [4] [5]-based
built-in cameras, and the inertial sensor of the smartphone
is a low-cost and high-precision positioning solution with the
potential to be widely used. Unfortunately, VIO does not work
well in low-textured and dynamic illumination environments
[6]. Wireless sensor-based methods (e.g., ultra-wideband [7]
and 5G [8]) rely on pre-arranged signal base stations. This cost
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is extremely high, which is unrealistic for large-scale indoor
environments.

An Inertial Measurement Init (IMU) can be used to provide
3D motion estimation independent of the external environ-
ment. Moreover, almost all wearable smart terminals (e.g.,
phones, watches, glasses) are equipped with IMU. Therefore,
from the perspective of the system cost and sensor proper-
ties, the IMU-based method is ideal for providing pedestrian
positions in actual applications. This function is known as a
strapdown Inertial Navigation System (INS) [9]. However, the
strapdown INS, which uses a consumer-grade IMU, cannot
individually maintain the position accuracy for more than
several seconds. This is because the position accumulation
error of strapdown INS is proportional to the square of
time, and the errors (e.g., biases, scale factor, noise) of the
consumer-grade IMU are large and unstable. Thus, pedestrian
dead reckoning (PDR) is used as an alternative to provide
usable position estimations for pedestrians. PDR uses prior
knowledge of human motion patterns to mitigate accumulation
errors in PDR. More specifically, the PDR based on IMU
typically uses a pedestrian gait motion pattern. By identifying
and classifying pedestrian steps, the estimated step length can
be adopted to correct the estimated INS velocity [10] [11]
[12].

However, the motion patterns of pedestrians during walk-
ing are difficult to detect in real applications. Therefore,
learning-based PDR methods have been proposed. This type of
method estimates the velocity or displacement using raw IMU
measurements and shows impressive accuracy compared with
traditional PDR in experiments [13] [14] [15]. Learning-based
PDR can be categorized into two groups.

The first group of methods, including IONet [13], RoNIN
[14] and IDOL [16], uses magnetometer measurements. IONet
estimates the 2D displacement using IMU measurements rep-
resented in a global frame. The conversion of IMU measure-
ments from the device frame to the global frame uses the
rotation estimated by the Android API. RoNIN is implemented
based on a similar strategy, but with training and evaluation on
a larger dataset. Meanwhile, other deep learning architectures
include a temporal convolutional network (TCN), a residual
network (ResNet), and long short-term memory (LSTM),
which have been tested in field experiments. Both methods
show better performance than traditional PDR. Therefore, the
neural network inputs of IONet and RoNIN rely on the abso-
lute orientation estimated by the Android API, and the Android
estimate orientation uses magnetometer measurements. Thus,
position accuracy is easily degraded in areas with a highly
perturbed magnetic field.
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The second group of methods is independent of magne-
tometer measurements, that is, TLIO [15] and [17]. [17]
uses IMU raw measurements directly to estimate trajectory.
TLIO [15] uses a multi-state Kalman filter (MSCKF) to
fuse the neural network and strapdown INS model. Unlike
IONet and RoNIN, TLIO uses the orientation estimated in
MSCKF to convert IMU measurements into local gravity-
aligned coordinates. This mechanism indicates that TLIO
is independent of magnetometer measurements and is not
affected by magnetic perturbations. This also implies that the
heading of TLIO drifts over time and affects its long-term
positioning accuracy of TLIO. Although TLIO can provide
accurate relative positioning results, the positioning error is
still significantly affected by the heading drift [16].

In theory, a magnetometer can provide heading observations
by measuring the earth’s magnetic field. However, direct
constraint heading using magnetometer measurements is dif-
ficult to perform in indoor scenarios because magnetometer
measurements are not reliable [18] [19]. More specifically,
building materials and electronic equipment highly perturb the
indoor magnetic field. The quasi-static magnetic field (QSF)
technique, which uses only magnetic constraints in the quasi-
static field, can effectively use magnetometer measurements to
estimate heading in highly perturbed environments [20] [21].
The QSF can inhibit the increase in the heading error, but
the heading error is still slightly accumulated. This indicates
that heading drift is still the primary error source of PDR in
long-term trajectory estimation. Furthermore, these methods
can only use calibrated magnetometer measurements, which
are difficult to obtain in real-world applications.

IDOL aims to solve this issue by training a neural network
to estimate orientation based on inertial and magnetometer
measurements. IDOL shows the ability to capture magnetic
field perturbations. Therefore, its positioning accuracy out-
performed that of RoNIN and TLIO in the experiment. The
estimated orientation of the IDOL can be utilized to improve
the positioning accuracy of RoNIN. However, learning-based
orientation estimators may degrade in novel environments, as
mentioned in [16]. However, it is difficult to collect data from
every environment. However, this method cannot be used for
magnetometer measurements with significant bias.

This paper proposed a graph-optimization-based system
that fuses learning-based inertial odometry (AI-IMU) and
magnetometer measurements to provide a global consistent
heading estimation in magnetic disturbances. This study makes
the following two major contributions:

• We found that the long-term mean value of the ge-
omagnetic field is significantly more stable than the
local magnetic field. The proposed system reduces the
influence of local magnetic field disturbance by using the
long-term mean value rather than the instantaneous value.
Benefitted from this, the proposed system shows a 50%
improvement in positioning accuracy in indoor scenarios.

• To deal with the frequent change of the magnetometer
bias, we simplified the model of the magnetometer bias
and performed real-time estimation and compensation.
This property makes the proposed system user-friendly

Fig. 1. Data flow of the proposed system.

for consumer-grade devices since the demand for cali-
bration before usage is avoided.

The remainder of this paper is organized as follows: Section
II briefly describes the entire system. Section III provides a
detailed description of the solution. Section IV uses a field
test to prove that the proposed method improves the accuracy.
Section V summarizes this study.

II. SYSTEM OVERVIEW

Compared with traditional PDR, learning-based inertial
odometry indicates a gratifying positioning performance.
However, the drift of the heading still causes the performance
of the learning-based inertial odometer to drop significantly.
The heading angle based on the magnetometer observation is
an available information source that can effectively control
the heading angle error. As mentioned in the introduction,
using magnetometer observations to train the network model
cannot guarantee that the positioning performance will not
decrease in a new building environment. The phenomenon
in which the main component of the environmental magnetic
field vector is still a geomagnetic field is not limited to a
single test environment. This makes the magnetic heading
observation more universal. Therefore, this study combined
network and traditional empirical models to form a robust
pedestrian positioning solution.

As shown in Fig. 1, this system contains two stages named
training and testing. The training stage uses visual-inertial
odometry (VIO) to provide poses of IMU for training a
network that can estimate 3D displacement based on IMU
measurements represented in the navigation frame. This stage
was introduced in a previous study by [22]. This study focused
on using a magnetometer during the testing stage to improve
position accuracy. The testing stage fuses the information from
IMU, the pre-trained network, and magnetometer to provide
a trajectory without heading drift and is not affected by local
magnetic field disturbance. In this stage, the system comprises
learning-based inertial odometry (denoted as AI-IMU) and a
graph optimization estimator.
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Fig. 2. Illustraction of magnetic field vector and magnetic field heading
error. (a) and (c) gives magnetic field vector at each point of the trajectory A
and B. (b) and (d) gives magnetic field heading error of the trajectory A and
B.

The AI-IMU uses raw IMU measurements to provide 3D
relative pose estimation, and consists of a neural network
(denoted as Network in Fig. 1) and a Multi-State Cloning
Kalman Filter (MSCKF). The neural network provides a 3D
displacement between the beginning and the end of a sliding
window, with the sliding window length being 1 s. The input
of the neural network is IMU measurements in the sliding win-
dow, represented in a local gravity-aligned coordinate frame.
To obtain a continuous and stable pose estimation, MSCKF is
adopted to fuse the information from IMU mechanization and
neural network (denoted as Network in Fig.1). INS mechaniza-
tion is employed to predict the system state (including pose,
velocity, and sensor biases) and the corresponding uncertainty,
which uses IMU raw measurements.

The graph optimization estimator (denoted as the graph
optimization in Fig. 1) uses relative 3D pose coming from AI-
IMU and magnetometer measurements to estimate trajectory
without drift of heading. Considering the computational cost,
the estimator only estimates keyframes and utilizes a sliding
window strategy. Specifically, the AI-IMU provides the rela-
tive pose and corresponding uncertainty between the current
and previous keyframes, and the magnetometer provides mag-
netometer measurements of keyframes. The estimator builds
absolute and relative orientation constraints based on magne-
tometer measurements to mitigate heading errors.

There are two main challenges in estimating a consistent
global heading direction based on magnetic measurements
in indoor environments. More specifically, these challenges
include magnetic field perturbation and uncalibrated magne-
tometer biases.

For the first challenge, we realized that the long-term mean
value of the geomagnetic field was not affected by the local
magnetic field disturbances. Fig. 2 gives local magnetic field

vectors and magnetic heading errors of two trajectories. Local
magnetic field vectors are roughly in the same direction, but
with significant perturbation at some point. The magnetic
heading error represents the difference in the magnetic field
vector direction from the first moment. The local magnetic
field vector exhibits a significant disturbance, but the long-term
magnetic field vector is stable and reliable. This is reasonable
because building structures, obstacles, and other electronic
devices can easily affect the local magnetic field around them;
however, they cannot affect the magnetic field over a large
area. To utilize this characteristic, we must save long-term
magnetic field observations in the estimator and use this to
obtain the long-term magnetic field average and constrain the
heading. Thus, the estimator needs to store the magnetic field
information for a sufficiently long time or keyframes.

For the second challenge, the observability of magnetome-
ter biases originates from the change in pedestrian heading.
To improve the observability and eliminate the influence of
magnetic field perturbation, the estimation of magnetometer
biases also relies on magnetometer observations stored for a
sufficiently long time or keyframes. Simultaneously, multiple
geomagnetic observations in a short period have information
redundancy for the above two challenges because the magnetic
field disturbance and the Earth’s magnetic field cannot be
distinguished in the short term. In summary, the designed
algorithm requires long-term, low-frequency magnetometer
observations to solve the two challenges we face. For example,
we used a magnetometer observation for several hundred
seconds at a frequency of 1 Hz to estimate heading. On the
other hand, the AI-IMU relies on high-frequency information
fusion to ensure the stability of track inference. Specifically,
AI-IMU needs to save 10 keyframes every second to achieve
a correction frequency of 10 Hz. However, the observation
information of the AI-IMU is the displacement within a 1-
second output by the neural network; therefore, its keyframe
selection strategy is small in number but low in frequency.

Furthermore, it is unacceptable for real-time algorithms
to implement high-frequency and long-term insertion of
keyframes into one estimator. To bridge the difference be-
tween the two partial algorithms, this study proposes the
aforementioned two-layer estimator. Specifically, the AI-IMU
uses the output of MSCKF’s high-frequency fusion neural
network of the MSCKF to calculate pedestrian tracks. The
graph optimization algorithm combines the AI-IMU output
and low-frequency geomagnetic observations. Thus, the over-
all algorithm realizes full and effective use of various types of
information and lower computing resource consumption.

III. ALGORITHM DESCRIPTION

A. Coordinate Definition

This study defines two groups of coordinate frames, as
shown in Fig.3: coordinates adopted in the MSCKF and
coordinates adopted in the graph-optimization estimator. These
two groups of coordinate frames are adopted in two sub-
modules (AI-IMU and graph optimization) individually. The
only connection between these two groups is the relative pose
between keyframes.
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Fig. 3. Coordinate frames used in the proposed system. There are two groups
of coordinate frames. The MSCKF uses FN , FBt and FLt . The graph-
optimization estimator uses FG, FBt . Both FN and FG are gravity-aligned
coordinate frames aligned with the center of IMU at the initial moment.
The only connection between these two groups is relative poses between
keyframes, marked as red dotted lines.

MSCKF uses three coordinate frames: the navigation frame
is denoted as FN , the t-th body frame is denoted as FBt , and
the t-th local gravity-aligned coordinate is denoted as FLt .
The body frame aligns the coordinates of IMU at time t. FN

is the gravity-aligned coordinate system. It is aligned with the
IMU center at the initial moment. FLt is the gravity-aligned
coordinate frame. It has the same position and heading as that
of FBt . The MSCKF estimates 3D motion and IMU sensor
bias. The 3D motion parameterized as the position (tnbt ) of
the t-th body frame, rotation (Rnbt ) from FBt to FN and the
velocity (vnbt ) of FBt in FN .
Rnbt can be decomposed into three individual rotation

matrices.

Rnbt = Ryawt
Rpticht

Rrollt (1)

Ryawt
, Rpticht

, and Rrollt denote yaw, pitch, and roll, re-
spectively. According to the definition of FN and FLt , Ryawt

represents the rotation from FLt to FF .
The graph-optimization estimator uses two coordinates: the

global frame, denoted as FG, and the t-th body frame, denoted
by FBt . The global frame was the reference frame for the
estimator. It is a gravity-aligned coordinate and is located
at the position of IMU at the 0th moment. The magnetic
reference field is represented by FG and denoted as BG. The
pose of two adjacent keyframes in the estimator is denoted as
{Rgbt−L

, tgbt−L
} and {Rgbt , tgbt}. The subscript L defines

the time distance between keyframes. The implementation
time was set at 1 s.

The raw IMU measurements at tth moment are denoted as
aBt
t and ωBt

t . The magnetometer measurements represented
in FBt at tth moment are denoted by BBt

t . Furthermore, the
IMU measurements represented in FN are denoted by aN

t and
ωN

t .

B. AI-IMU

1) System State Definition: The full system state at tth
moment is defined as

Xt = [st,η1, ...,ηm] (2)

where η is the cloned system state, and st is the current system
state. st and η are defined as follows.

st = [tnbt ,vnbt ,Rnbt , ba, bg], (3)

ηi = [Rnbi , tnbi ] (4)

Rnbt denotes the rotation from FBt to FN . tnbt and vnbt
denote the position and velocity of FBt in FN . ba and bg are
the IMU accelemeter and gyroscopt bias, respectively. Hence,
the dimension of the system is 15+6m, where m is the number
of cloned system states, and 15 is the dimension of st.

2) State Propagation: The filter propagates the system state
using IMU raw measurements based on IMU mechanization.
In pedestrian positioning, the walking speed of the pedestrian
is low. Thus, the change in gravity orientation caused by
IMU movement can be ignored. Gravity gN is assumed equal
during positioning. Furthermore, the Earth’s spin is ignored.
We assumed that the IMU only measured the rotation related
to the navigation frame FN . The IMU mechanization utilized
in this approach is defined asfollows:

Rnbt = Rnbt−1
expSO3(ωBt

t ∆t) (5)

vnbt = vnbt−1 + gN +Rnbt(a
Bt

b ∆t) (6)

tnbt = tnbt−1
+

1

2
(vnbt + vnbt−1) (7)

where expSO3 denotes the SO(3)-exponetial map.
3) Measurement Update: The measurement update of the

AI-IMU uses the 3D relative displacement estimated by
the neural network. The input of the neural network is
IMU measurements represented in the local gravity-aligned
coordinate frame FLt . The network input is denoted by
{ât−100:t, ω̂t−100:t}. This implies that the latest 100 IMU
measurements are represented by FLt . Since the IMU samples
100Hz, the input is IMU measurements in the last 1 s. The
neural network inference process is defined as

{d̂Lt
t ,Σ

d̂
Lt
t
} = Network({ât−100:t, ω̂t−100:t}) (8)

where d̂Lt
t ∈ R3 and Σ

d̂
Lt
t
∈ R3×3 are the displacement and

the corresponding covariance matrix, respectively.
As described in Section III-A, the measurement function is

defined as

h(Xt) = R̂T
yawt

(t̂nbt−100
− t̂nbt) = d̂Lt

t + n
d̂
Lt
t

(9)

n
d̂
Lt
t

follows a normal distribution, N (0,Σ
d̂
Lt
t

). Furthermore,
we employed a χ2-test to avoid abnormal results provided by
the network block.
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4) Relative Pose and Uncertainty: In the proposed system,
the AI-IMU functions as an odometer that outputs relative
poses for further fusion. Specifically, we must provide the
relative pose between {R̂nbt−L

, t̂nbt−L
} and {R̂nbt , t̂nbt}.

Covariance matrix for the relative pose is also necessary. The
relative pose is defined as:

∆R̂btbt−L
= R̂T

nbtR̂nbt−L
(10)

∆t̂btbt−L
= R̂T

nbt(t̂nbt−L
− t̂nbt) (11)

∆R̂btbt−L
represents the rotation from FBt−L to FBt ,

∆t̂btbt−L
denotes the position of FBt−L in FBt . To model

the uncertainty of this relative pose, we calculated the corre-
sponding covariance based on the following equation:

Σ{∆Rbtbt−L
,∆tbtbt−L

} = HrelPtH
T
rel (12)

Hrel represents the Jacobian matrices of (10) and (11),
respectively.

C. Graph-Optimization-Based Heading Fusion

1) Problem Definition: The graph optimization estimator
fuses the relative pose and magnetometer measurements to
provide a lower position drift rate. The factor graph is shown in
Fig.4. The three states are estimated in the factor graph, includ-
ing the keyframe pose {R̂gbt , t̂gbt}, magnetometer bias bB ,
and magnetic field vector BG. The estimator can be used for
uncalibrated magnetometers by estimating the magnetometer
biases online. Furthermore, we estimated the average magnetic
field vector at the initialization stage and found that th average
magnetic field did not change over the entire experimental
area. The initialization stage is described in Section III-C2.
Otherwise, we only keep the system state for a short period
in the estimator. In detail, we maintain the 300 latest states in
the estimator and select one keyframe per second. Therefore,
the estimator contained the state in the last 300 seconds to
estimate the average heading.

As mentioned before, we realize that the average magnetic
field vector of a large area is not affected by magnetic field
perturbation. More specifically, the heading estimated by the
graph optimization was based on the average magnetic field
vector of the last 300 s. Thus, this heading should be close to
the actual heading and unaffected by the local magnetic field
perturbation. Furthermore, to eliminate the oldest keyframe
without loss of information, we adopted the marginalization
technique, which has been widely employed in the sliding
window graph-optimization problem. Section III-C3 provides
the details of the marginalization technique.

The full state vector at moment t in the sliding window is
defined asfollows:

Xt = [Rgbt−nL
, tbgt−nL

, · · · ,Rgbt , tgbt , bB ,B
G] (13)

Fig. 4. An illustration of the factor graph for fusing AI-IMU and magne-
tometer. AI-IMU provides the relative magnetic factor and gravity constraint
factor. The magnetic factor and relative magnetic factor are established based
on magnetometer measurements. The magnetic norm factor constraints the
norm of the local magnetic vector.

The maximum posterior estimation of the sliding window
is as a result of the estimator. Specifically, Xt by minimizing
the following cost function:

Xt =

arg min
Xt

{ ‖rprior‖2+ ‖r‖BG‖‖2Σ‖BG‖∑
ρ(‖rodo‖2Σodo

)+
∑
ρ(‖rg‖2Σg

)∑
ρ(‖rB‖2ΣB

)+
∑
ρ(‖r∆B‖2Σ∆B

) }
(14)

‖ · ‖2Σ represents the Mahalanobia norm of the residuals. ρ(·)
is the Huber norm [23] defined as

ρ(s) =

{
1 s ≥ 1

2
√
s− 1 s < 1

(15)

The cost function (14) defines a nonlinear least-squares
problem. We used the Levenberg-Marquardt algorithm [24]
[25] in Ceres Solver [26] to solve this problem. More specif-
ically, we linearize (14) and solve the linearized equation
iteratively. rprior denotes prior constraint. rBG represents
the strength constraint of BG. Generally, the main change
in pedestrian movement is the heading, while the pitch and
roll changes are minor. However, the observability of the
magnetometer biases in the vertical direction is weak, and
the biases can easily obtain an abnormal value. To mitigate
this issue, it is necessary to constrain the strength of the total
magnetic field vector to ensure that it is considered most of the
time. rg and rodo represent the gravity orientation constraint
and relative pose constraint, respectively, which are provided
by the AI-IMU. rB and r∆Brepresent the long -and short-term
magnetic field constraints, which are based on magnetometer
measurements. The details of the definition of the residual
function are provided below.
rprior represents the prior constraint and is defined as

rprior(x) = A(x− b) (16)
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A and b are defined based on prior distributions. Specifi-
cally, x can be recognized as following a normal distribution
N (b, (ATA)−1).
r‖BG‖ represents the total strength constraint on the

magnetic-field vector. It is defined as

r‖BG‖ = ‖BG‖ −ZBG (17)

ZBG represents the norm of the local average magnetic-field
vector. Particularly, this value can be manually selected based
on the theoretical model or average magnetic field vector
estimated previously.

The residual of the relative pose rodo is defined as

rodo({Rgbt−L
, tgbt−L

}, {Rgbt , tgbt}) =[
(RT

gbt(tgbt−L
− tgbt))−∆tbtbt−L

LogSO(3)(∆R
T
btbt−L

(RT
gbtRgbt−L

))

]
(18)

where tbtbt−L
and Rbtbt−L

are relative position and rotation
represented in FBt−L and calculated based on (11) and (10).
LogSO(3)(·) represents the logarithm function for SO(3) and
outputs a three-dimensional vector. Furthermore, the covari-
ance matrix Σodo is equal to Σ{∆Rbtbt−L

,∆tbtbt−L
} which is

calculated using (12). It is noteworthy that all linearization
operations for rotation use the same formula. Specifically, we
used perturbation on the right side of the rotation matrix.

The constraint of gravity orientation rg is defined as

rg(Rgbt) = Rgbtg
Bt − gG (19)

gBt and gG represent gravity vectors in FBt and FG re-
spectively. gG is predefined, because the global frame is a
gravity-aligned coordinate frame. gBt was calculated based
on the rotation estimated by the AI-IMU. More specifically, it
is calculated based on

gBt = RT
nbtg

N (20)

Because the relative pose residual rodo uses relative rotation
and displacement to constrain relative poses, the pitch and
rolling angle related to the navigation frame implicated in
the MSCKF of the AI-IMU will drift. Thus, we used the
orientation of the gravity vector to constrain the absolute
rolling and pitch angles.

The target devices discussed in this study are low-cost
consumer-grade devices with limited quality and accuracy. We
can ignore the scale factors and non-orthogonality corrections
under this condition, which do not significantly affect magne-
tometer measurements. Indeed, magnetometer measurements
are assumed to be affected only by biases and zero-mean
Gaussian noise. The environmental magnetic field can be a
combination of the geomagnetic field and magnetic field dis-
turbance caused by buildings. Thus, the relationship between
magnetometer measurements and the earth’s magnetic field
vector can be defined as

BB = Rgb(B
G +BE) + bB + nB (21)

BB represents the magnetometer measurements. BE repre-
sents the magnetic field disturbance that varies spatially. It was
impossible to estimate the absolute position without additional
observations. In the proposed method, we mitigate the effect

of this element by adopting an average magnetic field over
a long term. bB represents magnetometer bias. This can be
estimated by rotating the magnetometer. For example, when
the magnetometer rotates along the x-axis, the biases of the
y-and z-axises can be estimated. nB represents the random
noise variables of the magnetometer, following a zero-center
Gaussian distribution. According to this definition, we define
the heading constraints as follows:

The heading constraint based on the magnetometer mea-
surements rB is defined as

rB(Rgbt , bB ,B
G) = Rgbt(B

Bt − bB)−BG (22)

BBt represents the magnetometer measurements at moment t.
This residual rB provides a heading constraint. Otherwise, the
Huber norm is applied to rB to avoid the effect of abnormal
magnetometer measurements. Abnormal magnetometer mea-
surements can be caused by abnormal local magnetic fields or
other sources of error.

The relative heading constraint based on the magnetometer
mesurements r∆B is defined as

r∆B(Rgbt−L
,Rgbt , bB) =

Rgbt−L
(BBt−L− bB)−Rgbt(B

Bt − bB)
(23)

r[∆B] provides the relative rotation constraint based on
magnetometer measurements for adjacent keyframes. To avoid
the perturbation of the magnetic field, we applied the Huber
norm to this residual. By combining r∆B , rB , and r‖BG‖,
we can estimate bB and BG simultaneously. Specifically, bB
and BG are observable when the IMU is rotated around any
axis.

In summary, the proposed method models the heading,
magnetic biases, and local magnetic field vector simultane-
ously rather than assuming that the magnetic biases are known
through a calibration magnetometer before use. Thus, we can
directly adopt measurements from uncalibrated magnetome-
ters, which are convenient and user-friendly for consumer-level
devices.

2) Initialization: We aim to design a method that can
maintain the heading related to the first short period. As we
recongnized that the average magnetic field vector in the long
period can reflect the heading, the average magnetic field
vector in the first sliding window is equal to that in any
other sliding window. Therefore, we can estimate the average
magnetic field vector for the first sliding window and use this
average magnetic field vector to provide the heading constraint
for the rest of the trajectory. It is noteworthy that the proposed
method can estimate the trajectory during the initialization
stage. The trajectory accuracy explained in the experiments
does not ignore the initialization stage trajectories.

In the initialization stage, all the system states in Xt

are estimated. The absolute position and heading are still
unobservable in the system. To solve this problem, we fixed the
pose of the first keyframe ({Rgb0 , tgb0}) and set a prior con-
straint on this pose. Furthermore, we first optimize (14) when
there are more than ten keyframes contained in the sliding
window. This strategy is helpful for avoiding the estimation of
an abnormal magnetometer bias bB and magnetic field vector
BG for the first time.
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Fig. 5. Illustration of marginalization operation. The red circle selects the
system state ready to be removed and relative residual factors. The blue line
selects the sub-problem to be linearized. The green hexagon represents the
prior factor.

When the sliding window grew to a particular length, we
fixed the magnetic field vectorBG. In this implementation, we
fixed BG when the sliding window contained 300 keyframes.
In theory, by adopting the marginalization technique, we can
obtain an optimal posterior estimation of the magnetic field
vector, BG. Nevertheless, the marginalization operation uses
a Gaussian distribution to approximate the marginalized resid-
uals. This strategy causes loss of information. In this problem,
the loss of information causes the magnetic field vector BG

to change slowly during the entire positioning process. Thus,
we cannot maintain an absolute consistent heading if we do
not fix the magnetic-field vector BG.

3) Marginalization: To eliminate computational cost, we
employ a sliding window estimator. We adopted the marginal-
ization technique [4] [27] to approximate the information
contained in the removed residuals. It is widely used in visual
odometry. When we aim to marginalize a set of states δXm,
we must adopt the Schur-Complement operation for the sub-
problem contained by Xm and relative system state Xr. In
detail, we linearize the subproblem at a particular linearization
point to the linear system, defined as[

Hmm Hmr

Hrm Hrr

] [
δXm

δXr

]
=

[
bm
br

]
(24)

δXm = Xm −Xop
m (25)

δXr = Xr −Xop
r (26)

Xop
m and Xop

r represent linearization points of Xm and Xr.
Specifically, (24) is the linear system used in the Gaussian-
Newton method. By applying the Schur-Complement opera-
tion to (24), we obtain a linear system that is independent of
Xm.

H∗rrδXr = b∗r (27)
H∗rr = Hrr −HrmH

−1
mmHmr (28)

b∗r = br −HrmH
−1
mmbm (29)

(27) can be easily converted to a prior constraint for the re-
maining system states, Xm. From the probability perspective,
Xm −Xop

m follows a zero-mean Gaussian distribution.
Fig. 5 illustrates the marginalization strategy in the proposed

method. In our approach, we eliminated the pose of the oldest
keyframe. The relative system states contain the magnetic field
vector BG, magnetometer bias bB , and pose of keyframe next
to the oldest one. The relative residuals include rprior, rodo,
rg , rB and r∆B . After eliminating the oldest keyframe, the
prior distribution constraint for the relative system states was
added to the problem.

IV. EXPERIMENTS

In this section, we present the magnetic-field vectors of
the experimental scenarios. Then, we compared the proposed
method to other magnetic fusion methods and verified that the
proposed method can work with magnetometer measurements
with biases.

The remainder of this paper is organized as follows; Section
IV-A describes the test implementation in detail. Section IV-B
describes the metrics used to evaluate the performance of
our proposed method. Section IV-C presents the magnetic
fields and compares the positioning accuracies of all methods.
Section IV-D describes the effect of magnetometer biases on
the proposed method. Section IV-E shows a time consumption
comparison between the proposed method and the AI-IMU.
Section IV-F shows the effect of the maintained keyframe
numbers in graph optimization. Section IV-G summarizes the
experimental results.

A. Experiment Description

An Asus Tango phone was mounted on a human head for
data collection. This installation strategy aims to simulate the
case of AR glasses or headsets, which are the main forms
of AR devices. The Tango phone contains a global shutter
fisheye camera, depth camera, IMU, and magnetometer. IMU
measurements, magnetometer measurements, and ground-truth
poses were collected at 100 Hz. Magnetometer measurements
were calibrated using the Android API. Since the change in
the phone’s working state forms an additional equivalent mag-
netometer bias, we use the ellipsoid fitting method to manually
compensate the magnetometer bias to obtain a more accurate
magnetic field vector. The ground truth poses are the outputs
from visual-inertial odometry. The Tango phone can use the
embedded camera and IMU to estimate 3D motion through the
visual-inertial odometry technique. Furthermore, it can build
a visual map of the selected area and perform positioning on
this map. Thus, we used the result of positioning in a pre-
built map as the ground truth, if possible. Otherwise, in the
scenario where the Tango phone cannot build a map, we select
trajectories for which odometry can provide good positioning
accuracy. We use the outputs of visual-inertial odometry as
the ground truth directly.

We used the AI-IMU method described in LLIO [22] which
is a lightweight version of TLIO [15]. We use the ResMLP256
LLIO-Net [22] to estimate the short-period displacement in the
AI-IMU. The LLIO-Net was trained using a 40 h dataset. Six
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people captured the dataset using three devices in two build-
ings. It is worth noting that the magnetometer measurements
were never used during the training of the LLIO-Net.

We compared the proposed method to several other meth-
ods. IDOL [16] is the only previous study that focused
on providing accurate heading based on a magnetometer to
improve learned-based inertial odometry. However, its perfor-
mance degrades in new environments not contained in the
training dataset, limiting the application of this technique in
new environments. Furthermore, the author did not provide
a pre-trained model or code at this time. Thus, we did not
compare these methods. Since this paper focused on avoiding
the effect of local magnetic field perturbation, we compared
our method to two conventional methods to avoid the effect of
local magnetic field perturbation. The details of these methods
are as follows:

• AI-IMU
The AI-IMU, as mentioned in Section III-B, is pure
learning-based inertial odometry without dependency on
magnetometer measurements. It is the basis for all the
methods described below.

• Mag Filter
The Mag Filter is the modification of AI-IMU, adding
a measurement function using magnetometer measure-
ments. Moreover, a χ2-test, which is widely adopted
in the Kalman Filter to avoid the effect of abnormal
observations, is employed to avoid abnormal magnetome-
ter measurements [28]. The measurement update using
magnetometer measurements at t-the defined as

BN = RnbtB
Bt (30)

BN is magnetic field vector in the navigation frame
FN . It is directy given in the experiments. BBt is
magnetometer measurements at moment t.

• QSF Filter
The QSF uses magnetometer measurements based on the
quasi-static field (QSF) hypothesis [20]. It detects the
QSF condition, and adopts magnetic constraint in the
quasi-static magnetic field. More specifically, it detects
quasi-static magnetic field based on detecting changes
of magnetic strength. In a quasi-static magnetic field, its
measurement update at t is defined as

BQSF = RnbtB
Bt (31)

Here, BQSF is magnetic field vector of current quasi-
static magnetic field. It is calculated based on the first
moment that detects the current quasi-static magnetic
field.

• Graph-Based
The Graph-Based is the proposed graph-optimization-
based fusion algorithm. In this approach, we select one
keyframe per second and keep a sliding window contain-
ing 300 keyframes.

In the remainder of this paper, we denote the ground-truth
trajectory as GT.

(a) (b)

Fig. 6. Illustration of Trajectory A use magnetic measurements with biases.
(a) gives the trajectories of each methods. Trajectories are aligned with ground
truth trajectory(GT). (b) shows the heading error of each algorithm. Magnetic
Heading Error represents the heading difference between the current magnetic
field vector and the reference magnetic field vector.

B. Evaluation Metric

In this study, we used the aligned average position error in
the horizontal plane to evaluate the positioning performance of
the aforementioned algorithms. The position of the estimated
trajectory and the ground truth trajectory are represented in
the navigation frame and are denoted as {t̂0, · · · , t̂N} and
{t0, · · · , tN}. R̂t and R are 2D rotation matrices. t̂t and t
are 2D translations. We used the first 20% of the estimated
trajectory to align with the ground truth trajectory. Specifically,
we estimated the 2D rotation and translation {Ra, ta} using
the following formula:

{Ra, ta} =

arg min
{Ra,ta}

∑
t∈[0,0.2N ]

{Ra(t̂t − ta)− tt} (32)

Then, the average position error is defined as:

e(t̂, t) =
1

N

∑
t∈[0,N ]

‖Ra(tt − ta)− tt‖ (33)

Ra and ta are the aligned rotation and translation, respectively,
as described in (32). ‖ · ‖ represents l2norm. The trajectory
converted by {Ra, ta} is denoted as the aligned trajectory.

C. Positioning Performance

This section first compares all the methods using raw mag-
netometer measurements, and the results of the two trajectories
shown in Fig. 6 and 7. It is noteworthy that an Android smart-
phone can provide calibrated magnetometer measurements, but
the calibration results are variable and not always reliable.
Thus, the calibrated magnetometer measurements provided by
the Android systemcannot achieve the best positioning perfor-
mance. Fig. 6 and 7 (a) show trajectories of all methods. Fig.
6 and 7 (b) show heading error of all methods. The magnetic
heading is estimated directly by magnetometer measurements,
reflecting the effect of magnetometer biases and environmental
magnetic vector perturbation. The Mag Filter and QSF Filter
were affected by unreliable magnetic heading, and could not
provide acceptable positioning results.

To further demonstrate the robustness of the proposed
methods to magnetic perturbation, we described a systematic
comparison of the positioning performance of the proposed
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(a) (b)

Fig. 7. Illustration of Trajecotry B use magnetic measurements with biases.
(a) gives the trajectories of each methods. Trajectories are aligned with
ground- truth trajectory(GT). (b) shows the heading error of each algorithm.
Magnetic Heading Error represents the heading difference between the current
magnetic field vector and the reference magnetic field vector.

TABLE I
COMPARISON OF POSITION ERROR OF DIFFERENT ALGORITHMS.

Traj. Length(m) Position Error (m)
AI-IMU Mag Filter QSF Filter Graph-Based

A 324.52 4.44 6.61 3.43 2.64
B 621.13 9.02 9.02 8.46 2.58
C 734.96 10.36 15.67 15.24 5.52
D 758.04 16.00 14.39 9.38 3.60
E 591.46 6.65 5.61 19.64 2.34
F 670.09 6.43 7.26 21.71 4.43

system with that of other methods. Other algorithms (Mag
filter and QSF filter) cannot estimate acceptable results using
magnetometer measurements with biases. In this comparison,
the Mag Filter and QSF Filter used calibrated magnetic
measurements in the following experiments, and the proposed
method used magnetometer measurements with biases to
demonstrate their superiority.

As mentioned in Table I, we used six trajectories at different
locations and with different shapes to evaluate the magnetic
fusion results. Trajectory A involves walking in a small
office building where the Tango phone can construct a pre-
built map. All trajectories were walked for a long time to
ensure that the heading drift caused a significant positioning
error. The proposed method (graph-based) showed the smallest
positioning error in all cases. The position error of the graph-
based method (the proposed method) was significantly smaller
than those of the other methods. Fig. 8 shows the cumulative
distribution function(CDF) of position error of all trajectories.
The performance of the graph-based method was better than
that of the other methods. Furthermore, the performance of
the Mag Filter and QSF Filter was not stable. The QSF filter
showed better accuracy than the Mag filter in trajectories A,
B, C, and D. In contrast, for trajectories E and D, the Mag
filter showed better accuracy.

Fig. 9 and Fig. 10 give detail of the magnetic field vector
and comparison between algorithms. Fig. 9 (a) and Fig. 10
(a) show the local magnetic field vector. It is calculated based
on the magnetometer measurements BBt and rotation matrix
Rnbt of the ground truth trajectory. The local magnetic field
vector BN

local is defined as follows:

BN
local = RnbtB

Bt (34)

The magnetic field vector is roughly consistent, but perturbated
at some positions. Thus, it is proven that the average magnetic
field vector in the sub-areas is only limitedly affected by the
magnetic field perturbation.

Fig. 9 (b) and Fig. 10 (b) show angle difference between
each method and ground truth. We calculated the angle dif-
ference based on the aligned trajectory for each method, as
mentioned in Section IV-B. To illustrate the effect of the local
magnetic field vector heading, we provide the heading dif-
ference between the local magnetic field vector and reference
magnetic field vector. This heading difference is denoted as the
magnetic heading error in Fig. 9 (b) and Fig. 10 (b). In Table
II, we provide the average heading error and corresponding
magnetic field vector heading difference, which represents
the difference between the reference heading and the heading
estimated based on magnetometer observations.

Because the Mag filter directly uses magnetometer measure-
ments in the measurement update, its heading is easily affected
by magnetic field perturbation. Meanwhile, its heading was
slightly better than the heading direction of the magnetic field
vector heading. The Kalman filter simultaneously estimates
the current heading based on the compressed prior information
and the current magnetic field vector heading. In other words,
the heading is the weighted average of the previous magnetic
headings. As shown in Fig. 9 (c) and Fig. 10 (c), its position
accuracy is significantly degraded because of the heading
perturbation.

QSF filters are robust to magnetic-field perturbations be-
cause they do not use magnetic constraints when the magnetic
field varies. The heading error of the QSF filter increases
over time because the QSF does not use a globally consistent
reference magnetic field vector. Although QSF is not easily
affected by local magnetic field perturbation, its heading error
is higher than that of the Mag filter in the long term.

The proposed method(graph-based) is robust to magnetic
field perturbations and does not drift over time. This shows
the best relative accuracy of heading estimation. However,
it may maintain a heading bias related to the ground truth
heading. This bias was caused by the difference between the
global average magnetic field vector and the average magnetic
field vector at the beginning of the experiment. In other
words, the average magnetic field vector during the first sliding
window contains bias in other areas. We evaluated the position
accuracy and used an aligned trajectory to avoid this problem.
In Fig. 9 (c) and Fig. 10 (c), the aligned trajectories show that
Graph-Based provides the best relative positioning accuracy
in the experiments.

In the experiments, the graph-based method, which uses
uncalibrated magnetometer measurements, shows better per-
formance than other methods that use calibrated magnetometer
measurements.

D. Effect of magnetometer biases

Because the proposed method models the biases in the
proposed method, it can localize the user even when the mag-
netometer measurements contain biases. As mentioned before,
the graph-based method uses magnetometer measurements
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Illustration of CDF of all trajectories. (a), (b), (c), (d), (e), and (f) represent CDF of trajectory A, B, C, D, E, and F, respectively.

TABLE II
COMPARISON OF HEADING ERROR OF DIFFERENT ALGORITHMS.

Traj. Length(m) Heading Error (◦) Magnetic Field Vector
AI-IMU Mag Filter QSF Filter Graph-Based Heading Difference (◦)

A 324.52 0.40 3.06 3.12 2.05 6.18
B 621.13 6.42 4.58 9.62 2.66 7.61
C 734.96 3.58 3.51 18.55 3.49 13.16
D 758.04 12.76 8.39 4.12 2.71 3.37
E 591.46 1.50 3.02 24.99 1.92 4.89
F 670.09 8.00 2.63 16.99 2.32 10.09

with a known bias in the test. The bias is [30,−20, 30]µT .
Table I lists the estimated magnetometer bias of the graph
based on each trajectory. Fig. 9 (d) and Fig. 10 (d) give
the variation of estimated magnetometer bias over time in
trajectory A and B. We precisely estimated the y-and z-
components of the magnetometer biases. However, the x-
component converges slowly or does not converge to a given
value. This phenomenon may be because the x-axis is roughly
oriented upward. During the walking process, changes in the
pitch and roll angles were limited. Thus, the observability of
the x axis is weak. In some cases, the x-component of the
magnetometer bias may be unobservable without the constraint
of the magnetic field vector norm ‖BG‖. Fortunately, the
x-component does not significantly influence the heading
estimation when its observability is weak.

Table III lists the estimated magnetometer bias and position
error of Graph-based trajectories A, B, and C. The first column
shows the magnetic biases in the magnetometer measurements
for the graph-based optimization. Graph-based devices show
similar performance at different given magnetic biases. This
indicates that the proposed method is robust to the magne-

tometer bias.

E. Computational Cost

Because the proposed method aims to run on mobile de-
vices, the computational cost should be considered. Table IV
shows the time consumption of each block of the proposed
method (graph-based) during the run trajectory F. The method
was executed on a desktop computer equipped with an octa-
core CPU(i7-10700k). The total time length of trajectory F is
866 s. The proposed method costs 32.38 seconds. It runs 27×
in real time on a computer. The proposed method combines an
AI-IMU with an additional graph-optimization-based estima-
tor to fuse magnetometer measurements. The AI-IMU consists
of propagation (Section III-B2), measurement udpate(Section
III-B3), and network inference (8) blocks. The bottleneck of
the AI-IMU is the network inference module, which requires
18 seconds. The grah-optimization-based estimator is denoted
as graph-optimization in Table IV. This block, described in
Section III-C, contains graph generation, graph optimization,
and marginalization blocks. It costs 11.5 ms per time, but
only runs at 1 Hz. Thus, its total cost time is 30 s, which
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TABLE III
PERFORMANCE OF EACH TRAJECTORIES WITH DIFFERENT MAGNETIC BIASES

Given Magnetometer Bias A B C

[30,-10,30] Position Error (m) 2.64 2.59 5.53
Magnetometer Bias (µT) [24.8,-9.3,29.1] [ 29.2,-10.2,30.3] [ 31.3,-10.2,29.7]

[30,-20,30] Position Error (m) 2.64 2.58 5.52
Magnetometer Bias (µT) [ 24.8,-19.4,29.2] [ 29.2,-20.3,30.4] [ 31.3,-20.2,29.8]

[30,-30,30] Position Error (m) 2.64 2.59 5.52
Magnetometer Bias (µT) [ 24.8,-29.3,29.1] [ 29.1,-30.2,30.3] [ 31.3,-30.2,29.8]

[30,-40,30] Position Error (m) 2.65 2.56 5.53
Magnetometer Bias (µT) [ 24.8,-39.3,29.1] [ 29.2,-40.2,30.3] [ 31.3,-40.1,29.7]

[30,-50,30] Position Error (m) 2.66 2.56 5.53
Magnetometer Bias (µT) [ 24.8,-49.3,29.2] [ 29.2,-50.2,30.3] [ 31.3,-50.2,29.8]

[30,-60,30] Position Error (m) 2.64 2.56 5.52
Magnetometer Bias (µT) [ 24.8,-59.3,29.1] [ 29.2,-60.2,30.3] [ 31.3,-60.2,29.8]

TABLE IV
TIME CONSUMPTION OF THE PROPOSED METHOD.

AI-IMU Graph-Optimization TotalPropagation Measurement Update Network Inference
Average Time (millisecond) 0.013 0.34 2.10 11.5 -

Count 86664 8647 8657 867 -
Totally Time (second) 1.17 2.99 18.21 10.01 32.38

Ratio (%) 3.61 9.23 56.24 30.38 -

(a) (b)

(c) (d)

Fig. 9. Illustration of Trajectory A. (a) shows reference trajectory and local
magnetic field vector at some point. (b) shows the heading error of each
algorithm. Magnetic Heading Error represents the heading difference between
the current magnetic field vector and the reference magnetic field vector. (c)
gives the trajectories of each method. Trajectories are aligned with ground
truth trajectory (GT). (d) shows the estimated magnetometer bias bB outputted
by the proposed method (Graph-Based). The true value of magnetometer bias
is [30,−20, 30].

is less than that of the AI-IMU blocks. In summary, the time
consumption of the added graph-based optimization block did
not significantly exceed that of the AI-IMU. Meanwhile, the
resource-demanding computation of the proposed method is
acceptable for running on mobile devices.

(a) (b)

(c) (d)

Fig. 10. Illustration of Trajectory B. (a) shows reference trajectory and
local magnetic field vector at some point. (b) shows the heading error of each
algorithm. Magnetic Heading Error represents the heading difference between
the current magnetic field vector and the reference magnetic field vector. (c)
gives the trajectories of each method. Trajectories are aligned with ground
truth trajectory (GT). (d) shows the estimated magnetometer bias bB outputted
by the proposed method (Graph-Based). The true value of magnetometer bias
is [30,−20, 30].

F. Effect of sliding window size

The proposed method uses a sliding window to maintain
magnetometer measurements over the long term and achieves a
reliable heading estimation. The sliding window size is related
to the stability of heading estimation and position accuracy.
Fig. 11 gives the relation between position error and size
of sliding windows. When the number of keyframes is less
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Fig. 11. Relation between position error and maintained keyframe number
of trajectory A and B.

than 200, an increase in keyframes can significantly reduce
the position error. When the number of keyframes is greater
than 200, the increase in the number of keyframes has only
a limited impact on the positioning accuracy. The results for
Trajectory A do not include experiments with more than 300
keyframes because the entire dataset length does not reach 300
s. In other experiments, we used 300 keyframes.

G. Discussion

The robustness of magnetic field perturbation is the main
advantage of the proposed method. As shown in Fig. 9 (a)
and Fig. 10 (a), the phenomenon that the average magnetic
field in a large area can reflect the heading is determined in
these two experiment environments. Indeed, this phenomenon
was satisfied in all six experimental trajectories collected in
four different buildings. Under this condition, the proposed
method can constrain heading in areas with local magnetic
field perturbation and provide better position accuracy than
the others, as mentioned in Section IV-C.

Another advantage of this method is that the magnetometer
bias can be estimated online, as listed in Table III. Thus, this
method can be used on magnetometers, whether calibrated or
not, such as those installed in smartphones or AR headsets.
This situation is common for consumer-grade devices.

The proposed method combines the AI-IMU and graph-
optimization modules. This design helps the proposed method
achieve a trade-off between the accuracy and computational
cost. The characteristics of the magnetic field are that the
local magnetic field is highly perturbated, and the long-
term magnetic field is stable. To utilize this characteristic to
achieve a stable and no-drift heading estimation, we should
maintain magnetometer measurements in the long term, as
shown in Section IV-F. The AI-IMU relies on high-frequency
measurement updates, such as 10 Hz, using the network
outputs to ensure accuracy and reliability. However, it is im-
possible to achieve these two targets using a single estimator.

Therefore, a two-stage fusion strategy was designed. The AI-
IMU module outputs high-frequency pose estimation, and the
graph-optimization module runs at a low frequency to fuse
the output relative poses of the AI-IMU and magnetometer
measurements. Thus, the proposed method achieved a signif-
icant positioning accuracy improvement for the AI-IMU but
only slightly increased the computational cost, as mentioned
in Table IV.

V. CONCLUSION

A graph-optimization-based estimator was proposed to fuse
the AI-IMU and magnetometer. The proposed method can
use the heading based on magnetometer observations to im-
prove the pose estimation performance of AI-IMU in in-
door environments. The reasons include: 1) The proposed
method makes use of the fact that the magnetic interference
is zero-mean and uses a sliding window to suppress the
effect of the magnetic field perturbation. 2) The proposed
method estimates the magnetometer biases online to deal with
the magnetometer bias change caused by the working state
switches of the smartphone. The test results show that the
proposed method, even when using uncalibrated magnetometer
observations, still achieves the best position accuracy in all
tested scenarios compared to the existing methods that use
calibrated observations. Moreover, to satisfy the requirements
of real-time positioning, we analyzed the time consumption of
each module of the proposed method. The test results show
that the proposed method can run 27× faster than real time on
a desktop computer and does not significantly exceed the time
consumption of the AI-IMU. Therefore, its computational load
is acceptable for real-time operations.

In future work, because the sliding window length of the
proposed method is limited, the phenomenon in which the
average magnetic field vector is not affected by magnetic field
perturbation may not be valid in some cases. For example,
when a pedestrian walks around a small area with similar
magnetic-field biases, these biases cannot be mitigated within
the sliding window. Fortunately, these exceptional cases may
not appear frequently in the literature. Moreover, we will focus
on the tightly coupled fusion of the neural network, IMU
mechanism, and magnetometer measurements to obtain a more
stable and high-performance pose estimation.
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