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CrowdMagMap: Crowdsourcing based Magnetic
Map Construction for Shopping Mall

Yan Wang, Jian Kuang, Tianyi Liu, Xiaoji Niu, and Jingnan Liu

Abstract—Indoor positioning is an important part of sup-
porting the Internet of Things and location-based services.
Crowdsourcing-based magnetic map construction is a key tech-
nology to realize wide-area consumer indoor positioning. How-
ever, current crowdsourcing-based magnetic map schemes are not
suitable for typical indoor scenarios (e.g., shopping malls). The
reason is that they ignore the characteristics of crowdsourced
data, including short-term trajectory, various pedestrian motion
patterns, large-scale dataset, and so on. In this paper, we propose
a novel crowdsourcing-based magnetic map construction method.
First, learning-based inertial odometry is used to recover precise
user motion trajectories regardless of changes in motion patterns.
Then, a keyframe-efficient association method of magnetic time-
frequency features is proposed, which is suitable for short-
term trajectories of various shapes. Finally, a two-step global
estimation optimization is proposed to further eliminate false
associations of keyframes and improve the robustness of the
method. The feasibility of the proposed method is verified by
using a multi-user dataset in a typical shopping mall scenario.
The proposed method takes a total of 60.8 seconds to process
a 12-hour dataset (sub-trajectories with a duration of 90s),
and the average position error is 1.48m (with scale correction)
and 2.53m (without scale correction). Compared with the ex-
isting crowdsourcing-based magnetic map scheme, the proposed
method has been significantly improved in terms of feasibility,
accuracy, and efficiency.

Index Terms—Crowdsourcing, Magnetic Map, Keyframe As-
sociation, Pedestrain Navigation, Indoor Positioning

I. INTRODUCTION

Indoor positioning and navigation is key technology in
developing the Internet of Things (IoT) and location-based
services (LBS) [1]. Various sensors, including Bluetooth low-
energy (BLE) [2], WiFi [3] [4], magnetometer [5], and Inertial
Measurement Unit (IMU) [6] [7] [8] have been adopted to
provide accurate indoor positioning services for mass users.
IMU-based methods [9] [10] is usually used as an auxiliary
positioning technique because it can only provide accurate
relative trajectories in a short period of time. The methods
based on WIFI [11] [12], BLE [13], and magnetometer [14]
[5] can achieve meter-level positioning relying on pre-built
signal fingerprint maps (including radio frequency signal and
magnetic field signal). Therefore, an indoor signal fingerprint
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map is the basic premise to ensure the availability of indoor
positioning.

Following the principle of prioritizing signal fingerprint
accuracy, traditional fingerprint mapping methods, including
point-to-point and walking survey, require experts to use pro-
fessional equipment (e.g., total station) to measure geographic
coordinates and collect signal fingerprints according to pre-
planned routes [15]. However, the traditional method is far
from meeting the needs of large-scale indoor signal fingerprint
construction due to time-consuming, laborious, and expensive
[16], which is the main limitation for the promotion of wide-
area indoor positioning services.

To reduce the cost of signal fingerprint mapping,
crowdsourcing-based mapping methods have attracted the at-
tention of many researchers [15] [17]. The core idea is to use
the IMU-based methods to estimate the trajectories of each
user, and use the similarity of signals or sensory landmarks to
associate and fuse the trajectories of different users.

Walkie-Markie [18] correlates user trajectories by using
unique landmarks formed at the moment of maximum RSSI,
which can avoid the influence of multipath propagation of
WiFi signals. Similarly, SoiCP [19] utilizes WiFi signals and
building gates as landmarks for trajectory association. WiFi-
RITA [16] proposes a robust iterative trace merging algorithm
based on WiFi access points as signal markers, which can
adapt to datasets with obvious noise, diverse motion patterns
and short-period trajectories, and obtain significant efficiency
improvements. [20] uses learning-based inertial odometry to
offer relative trajectories and a WiFi bundle adjustment to
recover trajectories. This approach is very resistant to different
motion patterns and suitable for data collection by non-experts.
However, due to the distribution density of the WiFi or
Bluetooth access points (APs) is uncontrollable, the above
methods will not work in areas with sparse distribution of
wireless signals.

Infrastructure-free indoor positioning methods (e.g., mag-
netic matching) are the primary option for consumer-grade
wide-area indoor positioning [14]. A crowdsourcing-based
magnetic map generation approach independent of wireless
signals is necessary. Compared with wireless signals, crowd-
sourcing map construction methods based on magnetic signals
are more challenging because the signals do not have globally
unique characteristics. Detail-wise, even if the magnetic field
at a certain location in the two trajectories is almost identical,
it is not guaranteed to be absolutely correct. [21] and [22]
assume that the trajectory of a single user is composed of
straight lines and corners, extract the magnetic field sequences
corresponding to the corners as keyframes, and use the cluster-
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ing method to associate them. Dynamic Time Warping (DTW)
methods are used to measure the similarity of the keyframes
in clustering methods. Based on the same assumptions and
ideas, [23] proposes a step-based magnetic sequence similarity
estimation method to replace DTW, which has significantly
improved computational efficiency. However, these methods
still have two issues for challenging application scenarios:
1) User trajectories in complex indoor environments (e.g.,
shopping malls) are irregular shapes instead of straight lines
and corners, which violate the basic assumptions of these
methods. 2) The computational efficiency is low, and it is not
suitable for large-scale dataset in practical applications. The
reason is that they use time-consuming clustering methods [24]
[25] to associate user trajectories, including k-means, affinity
propagation, and hidden Markov models.

To achieve wide-area indoor positioning for consumer appli-
cations, crowdsourcing-based magnetic field mapping schemes
for typical indoor scenarios (e.g., shopping malls) need to
be further explored. This paper summarizes the problems
faced by crowdsourcing methods in typical public scenarios
(e.g. shopping malls) in the II-A section, and proposes a
novel crowdsourcing-based magnetic map construction solu-
tion. Compared with existing solutions, the major contributions
of this paper are summarized as follows:

• We propose a novel crowdsourcing-based magnetic map
construction method that can accommodate short-period
trajectories with irregular shapes, poor sensor data (e.g.
magnetometer with uncalibrated bias), and various pedes-
trian motion patterns.

• To deal with the huge time consumption of keyframe as-
sociation, we propose a fast keyframe association method
in which time consumption increases slowly with the size
of the dataset. Benefiting from this design, the keyframe
association obtained a 12x speed up in the shopping mall
test scenario.

• To eliminates the influence of erroneously related
keyframe pair, we design a two-step graph-optimization-
based method for merging trajectories resistant to er-
roneous keyframe association. This approach eliminates
erroneously related keyframe pairs by utilizing the mag-
netometer data, the magnetic field distribution, and the
trajectories’ geometry.

The remainder of the paper is organized as follows. Section
II summarizes the problems faced by the crowdsourcing-
based map construction methods and gives an overview of
the proposed method. Section III describes the learning-based
inertial odometry. Section IV describes the proposed keyframe
association method. Section V provides a detailed description
of the graph-optimization-based trajectory merge method. Sec-
tion VI uses field tests to prove the feasibility and evaluate the
performance of the proposed method.

II. PROBLEM STATEMENT AND SYSTEM OVERVIEW

A. Problem Statement of crowdsourcing-based magnetic map
construction

The challenges and requirements for crowdsourcing-based
magnetic map construction in harsh scenarios are listed as

follows.
Short-period Trajectory: Regarding real-world crowd-

sourcing data collection using smartphone apps, one major
limitation is the device’s battery capacity. As a result, the app
cannot run in the background for extended periods. The data
collected through crowdsourcing is restricted to trajectories
that only last 1-3 minutes. Moreover, magnetic signals have
only three-dimensional independent components. Thus, the
reliability of sub-trajectories association methods based on
magnetic signal will be seriously degraded.

Various Motion Patterns: Since the crowdsourced data is
generated when the user uses the mobile phone in a natural
state, the data contains various motion patterns. However,
conventional IMU-based pedestrian dead reckoning (PDR)
cannot accurately determine the walking trajectory of pedes-
trians when they use smartphones in various motion patterns,
such as texting, calling, and swaying [26] [27]. Although it
is feasible to filter out simple motion pattern sensor data to
generate a magnetic map, the data utilization rate is extremely
low, and the cycle of providing positioning services will be
significantly prolonged. Therefore, an accurate and robust tra-
jectory estimation method that can adapt to complex pedestrian
motion patterns is an essential property of crowdsourcing-
based magnetic map generation methods.

Uncalibrated Sensors: The smartphone’s built-in sensors
are of low quality, so the sensor measurements usually have
large bias errors [28]. In particular, the magnetometer bias will
change significantly under the influence of the electromagnetic
effect caused by the change in the working state of the
smartphone. Then, because the magnetometer observations
cannot reflect the real environmental magnetic field, the user
trajectory association methods based on the assumption of a
consistent environmental magnetic field at the same location
will become unavailable. Meanwhile, it is unrealistic to assume
that the user will correctly calibrate the magnetometer biases
in the user-insensitive mode. Therefore, the proposed method
should be able to somehow calibrate the sensor online using
the acquired data.

Irregular Trajectory: Restricted by the indoor space struc-
ture, the shape of the user’s motion trajectory is complex and
diverse, including straight lines, right-angle turns, irregular
arcs, and so on. The existing crowdsourcing-based magnetic
map generation methods almost all assume that the user’s
trajectory consists of straight lines and right-angle turns,
which limits its application in complex indoor environments.
Therefore, it is unreasonable to make too many assumptions
about the shape of the user’s walking trajectory for dealing
with realistic user motion habits.

Large-scale Dataset: The necessity to manage massive
datasets is a requirement of crowdsourced mapping for the
reasons listed below. Firstly, a short-term trajectory carries less
information, so the probability that any two trajectories can be
uniquely associated is low, and the area covered by accurately
associated two trajectories is small. Secondly, it is difficult to
ensure that the gathered trajectories are spread evenly in space.
To guarantee that certain locations that are infrequently visited
by people may also be effectively recreated, we must collect
a huge quantity of data to ensure that these regions also have
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TABLE I
PERFORMANCE COMPARISON OF RELATED WORKS.

Information Source Short-period
Trajectory

Various
Motion Patterns Uncalibrated Sensors Irregular Trajectory Large-scale

Dataset
WiFi-RITA [16] WiFi, IMU Very Good Good Very Good Very Good Good

[20] WiFi, IMU Not Good Very Good Very Good Very Good Good
[21] IMU, Mag Not Good Not Good Not Good Not Good Not Good
[22] IMU, Mag Very Good Not Good Unknown Not Good Not Good
[23] IMU, Mag Good Not Good Unknown Not Good Not Good

CrowdMagMap (proposed) IMU, Mag Very Good Very Good Very Good Very Good Good

Fig. 1. Data process flow of the proposed solution.

enough data for generating a magnetic map.

B. System Overview

The algorithm flow of the proposed method is shown in
Figure 1. The crowdsourcing-based magnetic map construction
method can be divided into three stages: learning-based inertial
odometry (LIO), keyframe association, and global trajectory
optimization.

1) Learning-based Inertial Odometry: The magnetometer-
enhanced learning-based inertial odometry method proposed
by our previous work is employed to reconstruct each short-
period trajectory by using IMU and magnetometer measure-
ments. Compared with the traditional PDR method, LIO
can estimate complex pedestrian motion trajectories more
accurately. To obtain accurate environmental magnetic ob-
servations, the magnetometer bias is modeled and estimated
concurrently with the smartphone’s pose.

2) Keyframe Association: We extract keyframes from each
trajectory according to predetermined distance interval and
use the similarity of the magnetic field feature to associate
keyframes. Compared to keyframes based on trajectory shape
(such as corner and corridor), the proposed method has the
benefit of being free from specific trajectory shapes. However,
the calculation process of magnetic similarity is very time-
consuming, especially when dealing with large crowdsourced
datasets. To overcome this drawback, we present a method for
efficient keyframe association, which gives the whole system
a high level of efficiency under good adaptability.

3) Global Trajectory Optimization: We propose a two-step
optimization method to estimate the positions of all keyframes.
In the first step, the optimization problem is defined as a
nonlinear least square problem with inequality constraints.
The relative poses of keyframes within the same trajectory
are fixed, and the optimal parameters are the 2D location and
direction of the initial keyframe of each trajectory. Moreover,
the heading of the first keyframe is constrained by an in-
equality equation. This stage establishes a starting location for
each keyframe to expedite further optimization and eliminate
certain falsely related keyframe pairs. In the second step, a
comprehensive optimization of the pose graph is implemented.

After the above three stages, a density-based technique is
employed to exclude outlier trajectories. Then, the pose of
the estimated trajectory and the corresponding magnetic field
features with bias compensation and coordinate transform are
stored to generate a magnetic field map for sequence-based
matching positioning.

In conclusion, the proposed method not relies on assump-
tions about the trajectory’s shape and can build a map using
short trajectories. The proposed method adapts learning-based
inertial odometry to various pedestrian motion patterns and
uncalibrated sensors. Then, a keyframe association method
combining time-frequency features is proposed, which can
achieve high-efficiency trajectory association of large-scale
datasets even with irregular trajectories. Finally, the global
graph optimization method is used to exploit the spatial
constraints between trajectories to improve the phenomenon
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that short-period trajectory reduces the accuracy of trajectory
association.

III. LEARNING-BASED INERTIAL ODOMETRY

The graph optimization enhanced LIO proposed by our
previous work [28] [10] can adapt to various motion modes
and is an ideal trajectory estimation method. Unlike the
setting suggested by [28], this paper adopts global optimization
instead of sliding window optimization because the data post-
processing mode is available. To reduce the time consumption,
we reduce the number of iterations by providing optimal initial
values for graph optimization. The initial value consists of two
parts, the magnetometer biases and the orientation of each
instant.

The initial value of magnetometer bias is obtained by
using the constraint that the magnetic vector is constantly
combined with the relative rotation from integrating gyroscope
observations. Assuming that the magnetic field vector remains
unchanged in a short period of time (e.g., 2 seconds), the re-
lationship between magnetometer observations, magnetometer
bias, and relative rotation can be described as follows:

∆Rij(mj − bm) = (mi − bm) (1)

where ∆Rij represents rotation from moment j to i calculated
by integrating gyroscope measurements, mi and mj are
magnetometer measurements at i and j, respectively, bm is
magnetometer bias. To ensure that Eq.(1) is solvable, we select
data of short periods with significant rotation around x, y, and
z-axis of the magnetometer, respectively.

Then, a typical attitude and heading system (AHRS) ap-
proach is used to estimate the initial value of orientation at
each instant based on the constraints of the gravity vector and
magnetic field vector. To align the headings of all trajectories,
a graph-optimization problem is defined. The system state of
trajectory k is defined as follows:

Xk = [Rnb0 ...Rnbi , b
k
m] (2)

where Rnbi represents rotation from i-th body frame to the
navigation frame. bkm is the magnetometer biases of trajectory
k. Due to the length of each trajectory being short (no more
than 2 minutes), it is feasible to assume that the magnetometer
biases are constant.

The maximum posterior estimation of all system states is
obtained by minimizing the following cost function:

{X0, ...Xk,m
n} =

argmin
{X0,...Xk,mn}

{∥rprior∥2 +
∑

∥rmag∥2Σmag∑
∥rgyr∥2Σgyr

+
∑

∥rgra∥2Σgra
}

(3)

where mn is the magnetic field vector in the navigation
frame. rprior represents the prior constraint to mn. Because
we assume the x-axis and y-axis of the navigation frame are
orientated to the magnetic north and east, the y-axis of the
mn should be close to zero. rgyr is the relative rotation
constraint between adjacent instants provided by the gyroscope
measurements. rgra is the gravity orientation constraint as

described in [28]. rmag is the magnetic field constraint which
is defined as:

rmag = Rnbi(m
k
i − bkm)−mn (4)

where mk
i is magnetometer measurements in trajectory k at

i-th moment.
Solving Eq. (3), we obtain the orientation of each instant and

magnetometer biases of each trajectory. Benefiting from these
global consistency and accuracy rotations of each moment,
we estimate the shape of each trajectory represented in the
navigation frame based on the neural network discussed in
[10]. This method is robust to various motion patterns and can
provide a consistency scale that is superior to conventional
PDR methods. These advantages play a key role in the
following processing.

IV. KEYFRAME ASSOCIATION

This section introduces the proposed fast keyframe associa-
tion method. The feature extraction and similarity calculation
method are described in Section IV-A. Section IV-B describes
a two-step keyframe association method, which uses the
frequency-domain feature to achieve fast candidate keyframe
pair searching and confirm the candidate keyframe pair based
on the time-domain feature and geometric consistency.

A. Feature Extraction and Feature Similarity Calculation

1) Preprocess of magnetic field sequence: The availability
of magnetic field sequence-based keyframe association iden-
tification relies on the fact that the magnetic field vector at
a certain point is constant across time but fluctuates with
the position. To obtain the characteristics of the magnetic
field feature changing with the spatial position, we need to
perform data preprocessing on the original observations of the
magnetometer, including bias compensation, coordinate trans-
formation and resampling according to the spatial distance.

The raw magnetometer measurements are corrected by esti-
mated magnetometer biases of Section III and then converted
from the sensor frame to the navigation frame using the
following equation:

mn
i = Rnbi(m

k
i − bkm) (5)

Then, the magnetic field sequence can be converted to a func-
tion of moving distance using the estimated trajectory by LIO
as discussed in Section III. Benefiting from this conversion,
the moving speed no longer influences the magnetic field
sequence. Thus, we can avoid using DTW-like methods to
compare two magnetic field sequences.

This step outputs the magnetic field vector sequence denoted
as mk

i = [mk
xi,m

k
yi,m

k
zi]

T , which is 256×3 matrix. mk
i

obtained by equidistant sampling on the i-th keyframe (the
magnetic field sequence within a distance of 10 meters is 1
keyframe). mk

xi, m
k
yi, and mk

zi are three-axis components of
mk

i respectively.
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2) Frequency-domain Feature: The frequency-domain fea-
ture can be obtained by using the Fast Fourier Transform (FFT)
for each axis sequence of mk

i . Details of the frequency-domain
feature for magnetic field sequence can be found in [29]. It is
defined as:

FFk
i = [FFT (mk

yi)
T , FFT (mk

zi)
T , FFT (mk

xi)
T ]T (6)

where FFk
i is frequency-domain feature of keyframe i in the

trajectory k. FFT (·) represents the fast Fourier transform
function, and the result is mapping the input sequence in the
frequency domain. We only save the first eight components
of the FFT (·) to speed up distance calculation. This feature
vector definition causes significant information loss [29] but
is helpful for fast feature similarity comparison.

The distance of two frequency-domain features is defined
as:

FD(FFi,
F Fj) = ∥FFi −F Fj∥2 (7)

where ∥ · ∥2 is l2-norm. Since the distance of two frequency-
domain features is defined as l2-norm, the k-dimensional
tree (KD Tree)-based method can be adopted for fast similar
feature finding.

3) Time-domain Feature: The time-domain feature is de-
fined as follows:

TFk
i = mk

i (8)

The main advantage of this feature is without additional trans-
form, indicating that this processing is without information
loss. The disadvantage of this feature is that the distance metric
is hard to define as l2-norm. Because the small displacement
of two sub-trajectories may cause large Euclidean distances in
feature space which are not expected.

To avoid the disadvantage above, we defined the distance
between two raw features as:

TD(TFi,
T Fj)) =

1

N
S(TFi,

T Fj) (9)

where S(·) is a function that uses the maximum value of
three axes to align two features and estimate distance. Three
potential shift distances can be obtained by using the max-
imum value of three sequences (x, y, and z-axis) to align
two time-domain features. Furthermore, we should reverse
the sequences if users pass the same route with opposing
directions. Figure 2 shows the six possible alignment ways.
For example, considering the x-axis can obtain two possible
alignments way, the 3-axis of TFj and flipped TFj are shifted
to align the maximum value of the x-axis with TFi’s. The
feature distance of each alignment way is calculated based
on the overlap parts. The final feature distance between two
features is the minimum one in these six possible pairs
of matched sequences. This distance metric considers the
minor displacement and opposite movement direction of two
trajectories with no loss of information. Using the premise that
the moving distance of each trajectory is precise, it achieves
more time efficiency than DTW-based sequence distance. This
hypothesis is fulfilled by adopting the LIO.

In summary, the proposed keyframe association method
achieves a compromise between efficiency and accuracy. First,
a rapid candidate keyframe association is conducted by using

Fig. 2. 6 possible alignments for TD(TFi,
T Fj) calculation. Black points

represent points used to alignment two sequences.

low-accuracy and low-efficiency techniques. Next, an accurate
but computationally expensive method is employed to identify
relevant keyframe pairs in this candidate set, which achieves
a significant reduction in computational demands compared to
the entire dataset.

B. Keyframe Pair Determination

The conventional magnetic sequences-based keyframe as-
sociation method needs to calculate the similarity between
each keyframe pair. For N keyframes, the conventional method
needs to calculate similarity N ∗ N/2 times. This time com-
plexity is not acceptable when processing large-scale datasets.
To overcome this problem, the proposed method uses a k-d
tree based on the frequency-domain feature to find similar
magnetic sequences roughly. Then it uses a time-domain
feature to determine a few candidate keyframe pairs accurately.
Since the k-d tree-based roughly searching avoids calculating
most of the keyframe pair similarity and its computation
complexity is significantly lower than brute force searching
on large-scale datasets, this operation can significantly save
time. It is important to note that, as mentioned before, in
order to utilize the k-d tree for faster keyframe association,
the selected feature must be capable of calculating similarity
using the l2-norm, and also be resilient to misalignment when
using the l2-norm. In detail, when two trajectories pass the
same path, the similarity metric based on l2-norm must not
significantly affect by the slight difference in the sequence start
point. The frequency-domain feature fulfills this condition, but
the time-domain cannot. The time-domain feature must align
two sequences first and then evaluate the similarity using l2-
norm between the two aligned sequences.

The time complexity of building the k-d tree correspond-
ing to the frequency-domain feature of all keyframes is
O(nlog(n)), n is the number of samples in the dataset.
Based on the k-d tree data structure, the candidate keyframe
pairs of any keyframe are quickly determined by using the
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criterion that the frequency feature distance is less than a preset
threshold TF .

Due to the loss of information in the frequency-domain fea-
tures, there are many misjudgments in the candidate keyframe
pairs association, so the time-domain features and geomet-
ric consistency are used to further verify the correctness
of the candidate keyframes. Firstly, the candidate keyframe
pair whose TD is less than threshold TT is confirmed. The
displacement and whether the sequences are reversed are
also noted. In particular, we may determine the one-to-one
correspondence of each sample point of the magnetic field
sequence based on the information on this displacement and
whether or not to reverse the sequence. After determining the
one-to-one correspondence of the magnetic field sequence,
the one-to-one correspondence of the two sub-trajectories
may be determined. The one-to-one relationship between the
sub-trajectories’ points can be utilized for further geometric
consistency checks.

According to the correspondence provided before, the met-
ric of geometric consistency can be defined as:

Dgeo =
∑
n

∥pi
n − Tijp

j
n∥2 (10)

pi
n and pj

n are correspondence 2D points in trajectory i and
j, respectively. Tij is a 2D transformation matrix that fulfills
the following equation:

Tij = argmin
Tij

∑
n

∥pi
n − Tijp

j
n∥2

s.t. θ
Tij

lowbound < θTij < θ
Tij

upperbound

(11)

where θTij is rotation component of Tij . The associated
keyframe pair, which fulfills that Dgeo less than threshold Tgeo
passes the geometric consistency confirmation.

This step produces a pair of associated keyframes, which
shows that corresponding keyframes travel through the same
location and have a similar trajectory shape. The result of
the keyframe pair association is then applied to merge all
trajectories.

V. GLOBAL TRAJECTORY OPTIMIZATION

Global trajectory optimization exploits the relative pose
constraints between adjacent keyframes in the same trajectory
and the same-position constraints of associated keyframe pairs
to merge, optimize, and filter global trajectories. In this paper,
we proposed a two-step graph optimization method including
the inequality constraint optimization and the pose graph
optimization. Section V-A describes inequality constraints
for preliminary trajectory merging and higher-level geomet-
ric information to verify the correctness of the associated
keyframe pair. Section V-B describes the merging and shape
optimization of trajectories through global bundle adjustment.

A. Inequality Constraint Optimization

Assuming that the relative poses of all keyframes in the
same trajectory are accurate, then the errors of all keyframes
are consistent. The optimization parameters of one sub-
trajectory can be simplified as position pk = [xk, yk]T

and heading θk. This operation helps for adopting the sub-
trajectory shape to determine incorrect keyframe association.
To avoid the phenomenon of small-area circles in a single sub-
trajectory destroying the assumption that the magnetic heading
disturbance conforms to a zero-mean Gaussian distribution
[28], the assumption that the difference in direction between
the mean magnetic field vector of sub-trajectories and the
global mean magnetic field vector is smaller than a specific
threshold is used to construct inequality constraints. This op-
eration helps for adopting the sub-trajectory heading to deter-
mine incorrect keyframe association. Due to the robust kernel
function being adopted to the distance constraint, the effect
of the distance constraints of incorrectly associated keyframe
pairs is limited in the optimization problem. Benefiting from
properly using the LIO outputs, including the sub-trajectory
shape and heading, and the robust kernel function for distance
constraints, the inequality constraint optimization is robust to
incorrect keyframe association. According to the optimized
trajectory poses, the incorrectly associated keyframes can be
determined and removed.

The inequality-constrained trajectory merging problem can
be defined as:

{pk,θk} = argmin
{pk,θk}

∑
ρ(∥rdis∥2Σdis

)

s.t. θk
lowbound < θk < θk

upperbound

(12)

where

ρ(s) =

{
1 s ≥ 1

2
√
s− 1 s < 1

(13)

rdis = (R(θk)[tlkbj ]xy + pk)− (R(θq)[tlqbi ]xy + pq) (14)

R(θ) =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(15)

∥ · ∥2Σ represents the Mahalanobia norm, ρ(·) represents
the Huber norm [30], rdis represents the distance between
the corresponding keyframes, [tlkbj ]xy represents x and y
components of tlkbj which is position of keyframe j in the
coordinate lk, R(θ) is the 2D rotation matrix of θ. θklowbound

and θkupperbound are set as −20 and 20 degree separately
based on empirical. Eq. (12) defines a nonlinear least-squares
problem with inequality constraint. We utilize ceres solver [31]
to solve this problem. This problem can converge quickly
because the state space is small, 3K-dimensional (K is the
number of trajectories).

The optimized pose of each sub-trajectory is used to trans-
form all keyframes in the same coordinate frame (denoted as
n-frame). The pose of keyframe i in the trajectory k denoted
as {Rk

nbi
, tknbi}. Based on the estimated poses, we remove the

false keyframe pairs that the distance between a keyframe pair
is larger than 10 meters.

B. Pose Graph Optimization

This part adopts the global pose optimization to fuse all the
constraints obtained in the previous part, so as to obtain the
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optimal pose of each keyframe. The problem can be defined
as:

{Rk
nbi , t

k
nbi} =

argmin
{Rk

nbi
,tknbi

}
{
∑

ρ(∥rodo∥2Σodo
) +

∑
ρ(∥rdis∥2Σdis

)

+
∑

∥rgra∥2Σgra
+
∑

∥rmag∥2Σmag
}

(16)

rodo represents the relative pose residual between two
adjacent keyframes,

rodo({Rnbi , tnbi}, {Rnbi+1 , tnbi+1}) =[
RT

nbi
(tnbi+1

− tnbi)−∆t
LogSO(3)(∆RT (RT

nbi
Rnbi+1))

]
(17)

∆R and ∆t represents the relative rotation and translation
provided by Sec III, LogSO(3)(·) represents the logarithm
function for SO(3).
rdis represents the relative distance residual between two

keyframes in different sub-trajectories.

rdis(t
k
nbit

q
nbj

) = [tknbi − tqnbj ]xy (18)

[·]xy represents x and y components of the 3D vector. i and
j represent the keyframe index, k and q represent the sub-
trajectory index.

rgra represents the constraint of gravity orientation. It
enforces the estimated map alignment to the gravity vector.

rgra(Rnbi) = Rnbi ḡ
bi − gn (19)

ḡbi and gn represent gravity vectors in the local frame and the
navigation frame, respectively. Since the pose of smartphones
related to the pedestrian may vary during data collection, we
adopt the average accelerometer measurement in a short period
(1 second) to represent the gbi . ḡbi is defined as:

ḡbi =
1

N

N∑
s

Rbibi+s(ai+s − ba) (20)

Rbibi+s =

N∏
s

ExpSO(3)((wi+s − bg)δt) (21)

where, ai+s and wi+s represent accelerometer and gyroscope
measurement, ba and bg represent biases of accelerometer and
gyroscope estimated by LIO, Rbibi+s

represent rotation of the
body frame from moment i + s to moment i, ExpSO(3)(·)
taking an axis-angle vector to its rotation matrix in SO(3).
rmag represents the constraint of the global average mag-

netic field vector. To reduce the effect of local magnetic
field perturbation, the average magnetometer measurements
are adopted.

rmag(Rnbi , bm,mn) = Rnbim̄
bi −mn (22)

m̄bi =
1

N

N∑
s

Rbibi+s
(mi+s − bm) (23)

where bm is magnetometer biases and is different for each
trajectory. To achieve higher efficiency, we ignore the error of
Rbibi+s caused by integrated angular velocity within 1 second.
Because, benefiting from the gyroscope biases estimated by

LIO, the maximum error of Rbibi+s
is less than 1 degree

within 1 second.
The cost function (16) defines a nonlinear least-squares

problem that can be solved by iteratively linearizing (16)
and finding a solution to the linearized problem. We use
ceres- solver [31] to solve the problem. We select Levenberg-
Marquardt as the non-linear least squares solver and Conjugate
Gradients solver on the normal equations (CGNR) as the linear
solver.

After pose graph optimization, there are still some outlier
sub-trajectories that cannot be processed normally. Therefore,
we use the following criteria to identify and remove outlier
sub-trajectories: select a keyframe as the center, count the
number of keyframes within a preset distance radius, and the
keyframe is available when the number of frames is greater
than the preset threshold. Then, sub-trajectories are judged as
outliers when the number of valid keyframes is less than 90%.
Finally, the final merged trajectory is obtained.

VI. EXPERIMENTS AND RESULTS

A. Experiments Setup

We conduct a comprehensive experiment to evaluate the
system performance of the proposed method in a typical indoor
shopping mall environment. Figure 3 (a) shows the colorized
point cloud of the shopping mall, as the floor plan. Figure 3
(b) and (c) show two images captured in the shopping mall.
Compared with the typical office building scene, the magnetic
field features in the shopping mall are less distinguishable due
to the open environment. Moreover, there are almost no strict
right-angle turns in the spatial structure of the shopping mall,
which makes the traditional crowdsourcing-based construction
method of magnetic field maps unusable.

In the experiment, six volunteers (4 males and 2 females)
participated in the data collection and used five smartphones
(Samsung S10, Samsung S20, Mi 10, iPhone 13 Pro, and iPad
Pro). To reflect the real activity habits of the public users in the
actual indoor scene, we do not restrict the behavior of the test
users during the data collection process, including pedestrian
movement patterns, movement speeds, trajectory shapes, and
mobile phone holding methods. The acquired sensor data
includes a gyroscope, accelerometer, and magnetometer at 100
Hz. The dataset includes 12 hours of data without ground
truth and a subset (about 40 minutes) with ground truth.
The ground truth is calculated by using depth-assisted visual
bundle adjustment.

To improve data collection efficiency, the duration of a
single test for a single user lasts 10 to 20 minutes. This
obviously does not conform to the objective law of the real
activity duration of users. Therefore, we must divide the
trajectory according to the specified parameters such that the
length of each resulting trajectory is smaller than the specified
threshold ltraj . Here, ltraj is the time length of the trajectory.
Notably, because the magnetic field vector of a single point
lacks any degree of discrimination, the matching between
keyframes can only depend on a magnetic field sequence
comparison. Therefore, the magnetic field sequences cannot
be connected before and after the split point. This differs from
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Fig. 3. The spatial structure of the shopping mall. (a) Point cloud map
generation based on post-processing visual SLAM. (b) and (c) The image
captured in the shopping mall.

WiFi and visual, which can do keyframe association using all
signals observed in one epoch.

B. Evaluation Metric

We divide the test data with reference truth into two
parts: the first part (about 12 minutes) is used to evaluate
the accuracy of the crowdsourcing-based construction of the
magnetic field map, and the second part (about 28 minutes) is
used to evaluate the magnetic positioning accuracy using the
built magnetic map.

After the magnetic map construction, the estimated positions
of the first part of the trajectories are denoted as {t̂0, ..., t̂N}
and the corresponding reference positions are denoted as
{t0, ..., tN}. Three metrics, including Em, E′

m, and Ep, are
adopted to evaluate the proposed method.

The aligned horizontal position residuals Em is defined as:

Em =
1

N

∑
i∈[0,N ]

∥Ra(t̂i − ta)− ti∥ (24)

where,
{Ra, ta} =

argmin
{Ra,ta}

∑
i∈[0,N ]

∥Ra(t̂i − ta)− ti∥ (25)

∥ · ∥ is l2-norm. Ra and ta are 2D rotation and translation,
respectively.

Em′ is the horizontal position error while accounting for
the effect of scale, defined as:

Em′ =
1

N

∑
i∈[0,N ]

∥s ·R′
a(t̂i − t′a)− ti∥ (26)

where

{R′
a, t

′
a, s} =

argmin
{R′

a,t
′
a,s}

∑
i∈[0,N ]

∥s ·R′
a(t̂i − t′a)− ti∥ (27)

Ra, ta, and s are 2D rotation, translation and scale, respec-
tively.
Ep is the horizontal position error using the built magnetic

map that is alignment with the reference framework using (27).
The positioning method is a brute force sequence-matching-
based method [32]. The matching is based on a magnetic field
sequence withing a distance of 10 meters of the keyframe. The
Ep is defined as:

Ep =
1

N

∑
i∈[0,N ]

∥t̂li − ti∥ (28)

where, t̂li is localization result based on built magnetic map.
ti is correspondence reference position.

C. System Performance

This section evaluates the accuracy of the magnetic field
maps generated by the proposed method using a real dataset.
To obtain more believable conclusions, we evaluate the system
performance under different parameters, including dataset size
of 3, 6, 9, and 12 hours, and sub-trajectory time length of 60,
75, and 90 seconds. Next, we analyze and discuss the results
with the data size of 12 hours and a sub-trajectory time length
of 90 seconds.

Figure 4 (a) shows the crowdsourcing trajectories recon-
structed by the learning-based inertial odometry as described
in Section III. Since there are no presumptions regarding the
beginning point of each trajectory, the first frame’s coordinates
are used as the origin. We can find that the heading of all
trajectories is approximately aligned. This benefits from the
assumption that the y-axis of the magnetic field for each
trajectory is zero. Figure 4 (b) depicts the outcome of the pose
graph optimization (Section V-B), whereby the majority of
trajectories have been combined. Some trajectories are affected
by magnetometer bias or heading estimation error and cannot
be accurately correlated with other trajectories. However, this
phenomenon accounts for a small proportion of the dataset and
does not affect the accuracy of the correct correlation trajectory
with a large proportion. At this time, the density of a small
number of wrong keyframe pair is obviously lower than that
of the correctly associated keyframe at this position, and we
can easily eliminate them by density clustering. Furthermore,
Figure 4 (c) shows the local area of the recovered trajectories,
clearly showing that the shape and path of each trajectory used
to construct the map are irregular and not designed.

Figure 5 (a) and Figure 5 (b) show the results of aligning
the estimated trajectories with the reference trajectories using
two different alignment methods (with or without scale cor-
rection), Figure 5 (c) shows the localization results using the
reconstructed map that aligned with the reference framework
using (27). The semi-transparent gray lines represent the ref-
erence trajectory, all the colored lines represent the estimated
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Fig. 4. The recovered trajectories of the proposed crowdsourcing-based magnetic map construction method. (a) Raw trajectories estimated using learning-based
inertial odometry. (b) Trajectories recovered using two-step graph-pose-optimization. (c) Final selected trajectories through outlier rejection.

Fig. 5. Results on the test dataset estimated using the proposed method. The
gray line represents reference positions, the colored solid lines represent the
recovered trajectories using the first part of the validation dataset, and the blue
dots represent the positioning results using the second part of the validation
dataset. (a) The recovered trajectories with scale correction. (b) The recovered
trajectories without scale correction. (c) Positioning results are based on the
magnetic map generated by the proposed method.

trajectories, and the blue dots represent the results of sequence-
matching-based localization. Figure 5 (a)shows the proposed
method can accurately recover the relative spatial relationship
between crowdsourced trajectories but suffers from significant
scale error. The reason is that there is a scale error in the
user trajectory estimated by LIO, which is characteristic of
almost all traditional PDR algorithms and deep learning-based
inertial odometry. Nevertheless, the effect of scale bias can
be eliminated by global correction, as shown in Figure 5(b).
At the same time, based on the scale-corrected magnetic

TABLE II
ACCURACY OF THE PROPOSED METHOD WITH DIFFERENT DATASET SIZE

AND TRAJECTORY LENGTH

Trajectory Length Dataset Size (Hour)
(Second) 12 9 6 3

60
Em (m) 4.26 4.06 4.67 8.25
Em′ (m) 2.37 2.17 3.37 9.88
Ep (m) 3.20 3.36 3.60 9.39

75
Em (m) 3.66 3.67 4.02 5.43
Em′ (m) 1.91 1.89 2.47 4.38
Ep (m) 2.60 2.77 3.41 4.78

90
Em (m) 3.18 3.15 3.00 3.94
Em′ (m) 1.48 1.46 1.36 2.84
Ep (m) 2.53 2.83 2.68 3.91

field map, most of the positions estimated based on magnetic
field sequence matching have good overlapping consistency
with the reference position, as shown in Figure 6(c). The
average horizontal error of magnetic map and localization are
1.48m (Em′ ) and 2.53m (Ep), respectively. In general, the
above results can prove the feasibility and effectiveness of the
proposed method to a certain extent.

To further verify the performance of the proposed methods,
an ablation test is provided to illustrate the effect of the
time length of trajectories and the size of the dataset. As
illustrated in Table II, we investigate Em, Em′ , and Ep of
different time lengths and dataset sizes. We can conclude that
larger dataset sizes and longer trajectory lengths result in more
precise map construction and positioning. Longer trajectory
length improves the mapping accuracy because a longer trajec-
tory length can increase the probability of generating correct
associated keyframes with other trajectories. Meanwhile, it is
helpful to eliminate incorrectly associated frames. The benefit
of a larger dataset is that more sub-trajectory shapes are
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Fig. 6. CDF of trajectory error (Em′ ) and positioning error (Ep) using
various dataset sizes and trajectory length. (a) and (d) trajectory length is 60
seconds, (b) and (e) trajectory length is 75 seconds, (c) and (f) trajectory
length is 90 seconds.

TABLE III
TIME CONSUMPTION OF THE PROPOSED METHOD (12-HOUR DATASET).

LIO1 KA2 GTO3 Total Time
FE4 KPD5

Time (second) 43.0 0.9 9.8 7.1 60.8
Ratio (%) 70.7 1.5 16.1 11.7

1 Learning-based Inertial Odometry (Section III)
2 Keyframe Association (Section IV)
3 Global Trajectory Optimization (Section V)
4 Feature Extraction (Section IV-A)
5 Keyframe Pair Determination (Section IV-B)

mutually constrained to reduce incorrectly associated keyframe
pairs.

Figure 6 shows the cumulative distribution function (CDF)
of the proposed method using different dataset sizes and
trajectory lengths. Figure 6 (a), (b), and (c) show the CDF
of trajectory error (Em′ ) using various dataset sizes to build
the magnetic map. Figure 6 (d), (e), and (f) show the CDF
of positioning error (Ep) to show the effect of dataset size on
the positioning performance of the built magnetic map. The
proposed method using a small-size dataset (3 hours) shows
significantly lower accuracy in both Em′ and Ep. Thus, the
proposed method needs enough data to achieve the magnetic
map construction when the trajectory length is limited. In
other words, a large dataset is necessary for magnetic map
building via crowdsourcing using short trajectory. Nonetheless,
the spatial distribution of the data collected in this experiment
is uniform, which may not reflect reality. Therefore, the total
amount of data required for a region of the same size in a real-
world scenario may be greater than that used in experiments.

TABLE IV
TIME CONSUMPTION OF KEYFRAME ASSOCIATION OF RELATED

CROWDSOURCING-BASED METHODS.

Method Data Source Dataset Size Time Cost
WiFi-RITA [16] IMU,WiFi 10 hours 4520.3 seconds

[23] IMU,Mag 15 minutes 37.3 seconds
Direct-Method IMU,Mag 12 hours 127.7 seconds

Fast-Method (proposed) IMU,Mag 12 hours 9.8 seconds

Fig. 7. Time consumption of different keyframe association methods.

D. Efficiency of the proposed keyframe association method

Since large-scale data sets are the basic guarantee for the
feasibility of crowdsourcing-based solutions, the efficiency of
data processing is a very important evaluation indicator. Table
III gives the specific time consumption of each algorithm
module when using the proposed method to process the 12-
hour data set. The computing platform is a laptop, the main
parameters include a Ryzen R7-5800H 8-core CPU and an
NVIDIA GTX 3060 GPU. The proposed algorithm takes a
total of 60.8 seconds to process the 12-hour data set, and
the fast key frame association method takes 10.7 seconds,
accounting for less than 20%. We can learn that the proposed
fast keyframe association method is efficient and will no longer
be the largest time-consuming module of crowdsourcing-based
solutions. At the same time, we find that LIO is the most time-
consuming algorithm module, taking 43 seconds, accounting
for 70%. This is because of the poor performance of the GPU
used in this experiment, and using a higher-performance GPU
is an effective way to improve computational efficiency further.
The global trajectory optimization causes only 7.1 seconds.
It benefits from the optimization being split into two-stage.
The first stage described in Sec V-A converges quickly since
the state space is small and can provide a good initial value
for the second global pose graph optimization to improve the
convergence speed of the second stage.

Figure 7 shows the time consumption of direct keyframe
association (denoted as Direct-Method) and the proposed fast
keyframe association method (denoted as Fast-Method) for
different sizes of datasets. As the dataset size increases, the
time consumption of the Direct-Method increases linearly,
while the time consumption of the Fast-Method increases
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Fig. 8. Recovered trajectories with and without inequality constraint opti-
mization. (a) With inequality constraint. (b) Without inequality constraint.

slowly. In particular, when processing a 12-hour data set, the
efficiency of the Fast-Method is more than 90% higher than
that of Direct-Method, showing that the proposed method is
feasible and the efficiency improvement is very obvious.

Tabel IV summarizes the time consumption of keyframe
association for state-of-the-art crowdsourcing-based schemes.
WiFi-RITA [16] considers many interference factors of real-
world environments and is the most advanced WiFi-based
crowdsourcing method in the previous literature. The asso-
ciated keyframe determination of this method is efficiency
(takes only 12.3 seconds). But it has a time-consuming pre-
processing stage (WiFi mark searching) which costs 4508
seconds. [23], the magnetic field-based crowdsourcing solution
which notices to reduce time consumption, takes 37.3 seconds
for keyframe association when processing a 15-minute dataset.
This solution is inefficient because it uses a hidden Markov
model to do keyframe association. The fact that the time
consumption (37.3 seconds) of [23] processing 15 minutes
dataset exceeds the time consumption of the proposed method
processing 12 hours dataset indicates the proposed method
with significantly better efficiency. Furthermore, it is noticed
that [23] relies on detecting corners and only associating
corners to reduce time consumption. Thus, [23] is hard to
adapt to complex buildings that not only consist of hallways
and corners.

E. Effect of the proposed two-step optimization

This section mainly explains that two-step graph optimiza-
tion can more effectively resist the destructive effects of
wrong keyframe associations than one-step graph optimiza-
tion. Figure 8 shows the comparison of mapping results using
the global optimization with or without inequality constraint
optimization. The optimized trajectories without inequality
constraints (Figure 9 (b)) show significantly worse relative
pose estimation performance compared to the trajectories in
Figure 9 (a). Em′ of graph optimization method with or with-
out inequality constraint optimization are 1.48m and 3.60m, re-
spectively. The reason is incorrectly associated keyframe pairs

resulting in incorrect subtrack headings and shapes. In that
case, the inequality constraint optimization is immune to the
effect of this incorrectly associated keyframe pair. The good
initial value helps the two-step pose graph optimization get rid
of being badly affected by the false keyframe association.

VII. CONCLUSION AND FUTURE WORK

Aiming at the problem that existing methods are not suitable
for typical indoor environments (e.g., shopping malls) due to
too many restrictions on crowdsourced data, this paper pro-
poses a novel crowdsourcing-based magnetic map construc-
tion method. The proposed method consists of three stages,
including learning-based inertial odometry (LIO), keyframe
association, and global trajectory optimization. We adopt the
LIO to estimate accurate trajectory and sensor biases regard-
less of various motion modes. Benefiting from properly using
the information of the time-domain feature and frequency-
domain feature, the keyframe association method can achieve
efficient keyframe association using short-period trajectories
with irregular shapes. The global trajectory optimization is
proposed to remove incorrectly associated keyframe pairs and
improve robustness.

The performance of the proposed method is verified by a
field test conducted in a shopping mall. The proposed method
processes a dataset (dataset size is 12 hours, trajectory length is
90 seconds) in 60.8 seconds and provides merged trajectories
with an average position error of 1.48 meters (with scale
correction). The ablation study demonstrates the effect of
dataset size and trajectory length and proves the necessity of
large-scale datasets. Furthermore, we verify the efficiency of
the proposed keyframe association method and the robustness
of the proposed two-step graph optimization method.

The proposed method relies on recovered user trajectories,
however, LIO is a data-driven approach, and its performance
on general public user datasets is still an open issue. Therefore,
in future work, we intend to enhance the LIO method and pro-
vide reliability metrics for LIO using real datasets from general
public users. Moreover, consideration should be given to the
method for creating maps in more complex scenarios, such as
areas with changing local magnetic fields (e.g., underground
garages) and multi-story buildings.
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