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Enhancing Visual Navigation Performance by Prior
Pose-Guided Active Feature Points Distribution
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Abstract— Feature points are the principal measurements
employed in visual navigation, and their tracking qualities signif-
icantly affect the localization accuracy of visual-based navigation
systems. However, the current feature extraction methods do
not take into account the expected tracking quality of the
features in the subsequent steps, which may result in less
tracking length or limited parallax of the features. Such expected
feature tracking quality can be inferred using the upcoming
pose information of the carrier, which is a known factor for
robots and autonomous vehicles through path planning. Based
on the typical grid-based feature distribution method, this article
proposes a prior pose-guided active feature points distribution
(P2GD) method to redistribute the feature number in different
image regions. In the proposed method, the prior poses of the
carrier and the 3-D environment that represented by the sparse
triangulated features are utilized to predict the future tracking
of the features. The feature numbers for each image region
are reassigned according to the predicted tracking parallax.
The proposed method is implemented in a multistate constraint
Kalman filter (MSCKF)-based visual–inertial navigation system
(VINS) and evaluated with the public dataset and our private
robot dataset. The experiment results indicate that the proposed
method can effectively enhance the average tracking parallax of
the features and improve navigation performance significantly.
The robustness tests also confirm that intentionally introducing
certain noises in the prior poses does not hinder the proposed
method. Despite these perturbations, the proposed method still
demonstrates superior navigation accuracy than the conventional
grid-based method.

Index Terms— Feature distribution, feature parallax, tracking
quality, visual feature point, visual–inertial navigation.

I. INTRODUCTION

REAL-TIME, continuous and robust high-precision posi-
tioning, as the basis for intelligent unmanned systems,

has substantial application requirements. Among many posi-
tioning sensors, cameras are widely used because of their
low cost, small size, and strong applicability [1]. There-
fore, visual navigation has aroused a lot of research interest,
which includes direct method visual localization and fea-
ture points-based visual localization [2], [3]. The feature
points-based method exhibits stronger robustness and higher
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Fig. 1. Feature points tracking of a moving robot. (a) When the robot turns
right, the feature points in the left image edge will be lost immediately. (b) Sky
region is textureless, and no points can be extracted; the faraway ahead area
cannot form valid measurement because of limited parallax.

accuracy compared with the direct method. As a result, the
feature points-based method has been employed in many
visual navigation systems, including visual odometry, visual
simultaneous localization and mapping (SLAM), and visual
inertial odometry systems. In these systems, the feature
points, as the visual observation information, form constraints
between multiple camera frames and are used to estimate the
navigation state. Valid observation can accurately calculate the
feature’s 3-D position and constrain navigation status. Long-
term observation of feature points can build more mutual
constraints between frames and reduce cumulative navigation
errors [4]. Therefore, valid and continuous tracking of feature
points has an essential impact on the localization accuracy of
visual navigation systems.

To obtain valid feature measurements and reduce redundant
information, a standard method employed in visual navigation
systems is to distribute feature points uniformly in the image
and limit the minimum distance between features to distribute
them as evenly as possible in the 3-D environment [5], [6].
This method only aims at uniformly distributing feature points
in the current image plane, but it cannot guarantee the valid
and continuous future tracking of the extracted feature points.
Certain feature points will fail to track immediately when the
carrier moves, as shown in Fig. 1(a). When the carrier turns
right, the feature points at the left image edge are quickly lost,
making continuous tracking and valid observations challeng-
ing. In addition, feature points cannot be extracted or tracked
in the textureless image region, as shown in the textureless
sky region of Fig. 1(b). In the texture image region but far
away in the 3-D scene, the features’ parallax is too limited to
triangulate them accurately, as the features on the buildings of
Fig. 1(b). As a result, these feature points cannot form valid
constraints on the navigation state and have no contribution to
visual localization. In some feature extraction methods based
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on attention mechanisms and methods that actively extract
feature points [7], [8], [9], different weights are assigned to
each image region based on the image texture information.
Then, more feature points will be allocated in the textured
region. However, many feature points still have less tracking
and minimal parallax during the carrier’s moving. In brief, the
current feature point extraction methods do not consider the
feature’s following tracking quality, including tracking length
and the valid parallax.

In order to obtain feature points that exhibit longer tracking
length and superior valid parallax for visual localization,
we propose a prior pose-guided active feature points distribu-
tion (P2GD) method, which redistributes the feature number
into different image regions according to the predicted feature
tracking total parallax. Specifically, the P2GD method employs
the carrier’s prior poses and the current 3-D environment
information to predict the features’ tracking information in
each image region. The prior carrier poses can be obtained
from the path planning module of the self-driving carrier.
Notably, the 3-D environment is represented with the sparse
3-D feature points, derived from triangulating historical track-
ing measurements rather than relying on a prior 3-D landmark
map. Then, we take the predicted tracking parallax of each
image region as the distribution weight and reassign the
feature number of each image region. In this way, the visual
navigation system acquires more features with superior valid
total tracking parallax, such that the visual navigation system
demonstrates better localization accuracy. The main contribu-
tions of this article are as follows.

1) We propose and implement a P2GD method, which
employs the prior carrier poses and sparse triangulated
3-D features to predict the tracking information for
upcoming steps and redistribute the feature number of
each image region.

2) We construct the redistributed weight matrix based on
the predicted average tracking parallax of all features
in each image region and design a feature distribution
algorithm correspondingly.

3) We evaluate and analyze the enhancement of the pro-
posed method on the feature tracking quality and the
localization accuracy in both public and private datasets
using a multistate constraint Kalman filter (MSCKF)-
based visual navigation system and verify the robustness
of the proposed method by adding certain noise in the
prior poses intentionally.

The remainder of this article is organized as follows.
The related work will be introduced in Section II. Subse-
quently, we will present the details of the proposed method in
Section III. Then, the experiment and results will be discussed
in Section IV. Finally, we will conclude the proposed feature
distribution method in Section V.

II. RELATED WORKS

There are usually plenty of visual feature points extracted
from an image by the feature detection algorithm, mostly
clustered and poorly distributed [10]. Simultaneously, the
clustered features are almost in the same direction and gener-
ally contribute duplicate and redundant information for visual

localization. Also, visual features located in various direc-
tions to the camera offer different positioning constraints and
enhance the visual localization accuracy. Therefore, achieving
a reasonable feature point distribution becomes crucial, and the
relevant researchers have studied various feature distribution
methods.

A. Distance/Grid-Based Distribution

To solve the issue of clustered visual features, the nonmax-
imal suppression (NMS) method has been employed in visual
feature extraction. Bailo et al. [11] proposed three adaptive
NMS (ANMS) methods designed to efficiently extract visual
features uniformly across the image. In addition, a method
based on suppression via disk covering (SDC) in [12] effi-
ciently selected the robust and good space-distributed features,
demonstrating faster speed than the commonly used ANMS
methods. Although these methods reduce the redundant infor-
mation among the extracted visual features, they do not
guarantee a reasonable feature distribution in the image.

The grid-based feature points distribution method is also
commonly used in visual navigation systems [5], [6], [13].
This method distributes the features in all image planes by
dividing the image into some grids/regions and assigning an
average feature number to each grid. To prevent clustering, the
grid-based method also enforces a minimum distance between
the extracted features, making the features evenly distributed
throughout every image region. However, a drawback arises
if an image region is totally textureless, where the assigned
feature in such region will be wasted. To address this prob-
lem, researchers have proposed a solution by dividing image
regions from large to small based on a quadtree approach [14],
[15]. This approach ensures that features will not be assigned
to a grid if no features can be extracted, even after decreasing
the threshold. This strategy makes full use of the total number
of features.

In general, the distance/grid-based distribution methods only
focus on distributing the features as evenly as possible in the
image without considering the carrier’s coming movement.
As a result, these distribution methods offer no assistance to
the feature’s future tracking length and the tracking parallax.

B. Attention-Based Distribution

Considering that the texture of the image region deter-
mines the visual features quality, the salient region’s features
are generally regarded as more robust, stable, and accurate
landmarks. With the deep learning matured, the identification
of salient image regions has become faster and is widely
employed in visual localization. SalientDSO [16] incorporated
the visual saliency map into the direct sparse odometry (DSO).
The authors employed the saliency map, obtained by human
eye-tracking data, to predict the visual saliency and identify
the informative regions. Consequently, feature distribution in
the uninformative region would be downweighed. As feature
points with more robustness to viewpoint and illumination
changes were selected, SalientDSO demonstrated better posi-
tioning accuracy.

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2024 at 00:51:55 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ENHANCING VISUAL NAVIGATION PERFORMANCE BY P2GD 5027313

Frintrop and Jensfelt [17] presented a visual SLAM system
that selects salient visual landmarks with an active gaze control
strategy. The images’ regions of interest (ROIs) were first
found using the active gaze control strategy. Then, the stable
landmarks were selected and tracked in the ROIs, enabling a
better pose estimation for visual SLAM. Attention-SLAM [7]
and SBAS [18] employed the visual saliency learned from
the human gaze in the back end of their SLAM systems.
The saliency prediction map served as the weight map of the
feature points in the bundle adjustment of the state estimator,
rather than feature point distribution in the front end.

In general, attention-based methods also distribute the
features only according to the current image texture and
semantics. Therefore, the features’ future tracking qualities are
neglected in these feature redistribution processes.

C. Active Feature Distribution

Wang et al. [19] performed active view planning for visual
SLAM to address the perception failures in the featureless
areas. They built an environment information map based on
the Fisher information and determined the optimal informative
viewpoints through horizon optimization. Then, the gimbal
camera was controlled to the best viewpoint for tracking more
features and acquiring more robust and accurate localization.
In mobile robot navigation, motion planning and visual feature
tracking were considered in [20]. Specifically, the association
between visual features and the map points was taken into
account in the motion planning framework. The number of
associated map points in each frame was guaranteed, such that
the visual SLAM system demonstrated better performance.
Davison and Murray [21] proposed an automatic system using
active vision for robot localization, which chooses the land-
marks that can be tracked over a particular time. The localiza-
tion with the active vision showed significant advantages over
passive techniques. Zhao and Vela et al. [22] studied the selec-
tion of good features to track for visual SLAM. The sound fea-
tures were selected according to the observability indices, and
only the feature subset that contributes best to localization will
continue to be tracked. Therefore, the feature association and
localization accuracy will be improved. However, the feature’s
future tracking quality was not taken in their feature selection.
Valiente et al. introduced an adaptive probability-oriented fea-
ture matching (POFM) method in [23] and an efficient version
in [24], with the aim of actively and effectively identifying
candidate image regions for features in a visual localization
system. Utilizing the predicted robot pose obtained from a
filter-motion prediction stage, they calculated the probability
distribution of 3-D features in the subsequent image, which
confirms robust feature matching and enhances localization
accuracy. However, their POFM only focuses on robust feature
matching between two consecutive image frames and does not
predict the distribution of features in the upcoming images.

Some studies focus on actively adjusting path planning
to achieve better feature distribution for improved visual
localization. Rodrigues et al. [25] employed artificial potential
fields within the image to generate control actions, guiding
the vehicle toward the goal while still favoring feature-rich

areas. This active localization approach yields improved fea-
ture distribution, consequently enhancing visual localization
performance. Nonetheless, this method cannot be applied to
the robot following fixed routes. Zhang and Scaramuzza [26],
[27] constructed the Fisher information field by summarizing
the scene localization information into discrete grids. By inte-
grating the Fisher information field into the motion planning
algorithm, both the visual localization rate and accuracy are
enhanced. However, the method is also not suitable for robots
with predetermined routes. Moreover, it necessitates a prior
landmark map, thereby increasing the implementation com-
plexity.

The active feature distribution methods generally combine
motion planning with visual positioning, which considers the
features’ tracking length in their motion planning framework.
However, these methods neglected the features’ future tracking
parallax, which is also crucial for the localization accuracy
of the visual navigation system. Other active localization
methods focus on path planning rather than feature distribution
algorithms to enhance localization performance.

In summary of all the relevant researches, none of the
visual feature points distribution methods comprehensively
addresses the feature’s future tracking quality, including the
future tracking length, and the feature’s tracking parallax.
With sufficient guarantee of the feature’s future tracking in
the distribution process, the features’ tracking qualities and
localization accuracy of the visual navigation system can be
further improved. Therefore, we propose a prior pose-guided
active visual feature points distribution method to improve
the features’ tracking qualities and enhance the localization
accuracy of the visual navigation system.

III. METHODOLOGY

The proposed P2GD method constitutes an independent step
of the front end in the visual localization system. Conse-
quently, it is adaptable to visual localization systems with
different feature association methods, including optical-flow-
based and descriptor-based systems. In addition, it can be
integrated into systems leveraging different state estimators,
including MSCKF-based visual–inertial navigation system
(VINS), factor graph optimization (FGO)-based VINS, and
FGO-based visual SLAM. In this article, we apply the pro-
posed method to an optical-flow-based MSCKF-based VINS
to verify its enhancement on feature tracking and system
localization. In the following of this section, the overview of
the proposed method will be presented first. Then, the specific
steps of the proposed method will be introduced successively.
Finally, we will present the implementation in an MSCKF-
based VINS.

A. Overview of the Proposed Method

To keep the feature distribution method concise and effi-
cient, we design the prior pose-guided visual feature points
distribution method based on the grid-based distribution
method. The flow diagram of feature points extraction with the
proposed feature distribution method is illustrated in Fig. 2.
The red parts in Fig. 2 represent the traditional grid-based
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Fig. 2. Feature points extraction flow diagram. The yellow part is the proposed feature points distribution method.

feature distribution method. When a new image arrives, the
optimal-flow track will be first performed to obtain the asso-
ciated features in the image. Then, the tracked feature in each
image grid will be counted, and the required feature numbers
will be calculated with the preassigned same feature amount
of one grid. Then, the needed feature points will be extracted
from each image grid, all new features will be employed in the
VINS estimator to estimate the camera pose, and the feature
points buffer will be updated.

The proposed P2GD method, as shown in the yellow parts
of Fig. 2, will dynamically adjust the assigned feature number
of each grid. To actively redistribute features, the proposed
P2GD method needs the prior carrier poses and the 3-D scene
information. The carrier’s prior poses are acquired from the
path planning module of a self-driving mobile robot/car, while
the needed 3-D scene information is represented with the
sparse 3-D feature points, which are triangulated from the
saved historical feature measurements in the feature buffer.
Then, the upcoming tracking status of features is predicted
to redistribute features across the image plane. The predicted
tracking process of P2GD is illustrated in Fig. 3. The sparse
3-D feature points, represented by the black points in Fig. 3(a),
will be projected to the coming camera poses [excluding
the green one in Fig. 3(a)] to determine the features’ future
tracking status. Subsequently, the projected feature positions
on the upcoming camera planes are transformed to the current
image plane, as depicted by the predicted feature tracking
shown in Fig. 3(b). Then, the predicted features’ parallax of
each image region will be calculated as the feature distribution
weight. Finally, the feature number will be reassigned to each
image grid according to the weight. In the subsequently feature
extraction module, the needed features will be extracted, just
as that of the grid-based method.

B. Proposed P2GD Method

For the clarity of the symbols, we define the body frame
and the inertial measurement unit (IMU) frame as the b frame,
the camera frame as the c frame, the unified camera frame as
the u frame, the pixel frame as the p frame, and the world
frame as the w frame. The frame symbols with a subscript
denote the corresponding frame at a specific time. In addition,
we employ the rotation matrix and a vector to represent the
carrier’s attitude and position. In detail, Rw

b is the rotation
matrix from the b frame to the w frame, and pw

b is the position

Fig. 3. Diagram of the proposed method. (a) Prior camera poses and 3-D
scene, where the green camera is the current pose, the other cameras are the
predicted poses, and the black points are the sparse 3-D features. (b) Predicted
feature trackings in the pixel plane, the green points are the 3-D points in
the current pixel plane, and the other points are the expected pixel positions
corresponding to the coming camera poses.

of the b frame in the w frame. Unless special explanation, the
dimensions of the matrix and vector in the whole paper are
3-D. In this section, we introduce the specific steps of the
proposed method in order.

1) Prior Camera Poses and 3-D Scene: We utilize the prior
carrier poses obtained from the path planning module of the
self-driving vehicle as the prior poses information. The prior
carrier poses are generally represented in the local body frame,
i.e., pb0

bi
and Rb0

bi
, where b0 denotes the current body frame and

bi denotes the body frame corresponding to the predicted i th
pose. To get the predicted camera poses in the world frame,
we perform the following projection on the prior carrier poses:

Rw
ci
= Rw

b0
Rb0

bi
Rb

c

pw
ci
= Rw

b0
pb0

bi
+ pw

b0
+ Rw

b0
Rb0

bi
pb

c (1)

where { pw
b0

, Rw
b0
} is the current carrier pose in the world frame,

{ pb
c , Rb

c} is the camera-carrier extrinsic parameters, and { pw
ci

,
Rw

ci
} is the predicted i th camera pose.

In feature-based visual navigation, we maintain the con-
secutive measurements of all feature points in the feature
buffer to manage the visual measurements. Therefore, we can
acquire the features’ 3-D positions through their historical
visual measurements and the previous camera poses to make
up for the lack of depth information in the monocular camera.
For a feature point f j with m history measurements, the
feature point’s position pw

f j
can be formulated as follows:

(
Rw

c1

)T
(

pw
f j
− pw

c1

)
= zc1

f j
pu1

f j

· · ·(
Rw

cm

)T
(

pw
f j
− pw

cm

)
= zcm

f j
pum

f j

(2)
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where { pw
cm

, Rw
cm
} is the previous mth camera pose, zcm

f j
is the

feature point’s depth in the cm frame, and pum
f j

is the feature’s
unity coordinate in the cm frame.

By multiplying the skew symmetric matrix of pum
f j

, denoted
as [ pum

f j
]×, at the equation’s both sides, we can eliminate

the feature’s unknown depth zcm
f j

and obtain the following
equation:

m∑
i=1

([
pum

f j

]
×

(
Rw

ci

)T
)

pw
f j
=

m∑
i=1

([
pum

f j

]
×

(
Rw

ci

)T pw
ci

)
. (3)

As long as the feature has more than two historical
pixel measurements, the feature’s position pw

f j
can be solved

from (3).
Once we get enough triangulated feature points, these sparse

3-D feature points are employed to represent the 3-D scene
in our method. The 3-D scene, represented by the sparse
3-D features, is employed to predict the expected tracking
qualities of image regions in the following several frames.
That is, the average future tracking quality of the 3-D points
within one grid is treated as the future tracking quality of
the corresponding image region. If there are no 3-D points
in one particular image region, the future tracking will be
considered as nonexistent. It is reasonable for the featureless
regions considering that the image region without any 3-D
feature points is usually infinity or textureless.

2) Predicted Feature Tracking: We project the 3-D feature
points into the predicted camera frames to acquire the features’
future tracking information. Specifically, we first project one
feature into the i th predict camera pose, represented as pci

f j
,

through coordinate transformation. Then, the feature’s normal-
ized coordinates in this camera frame can be calculated as
pui

f j
= pci

f j
/pci

f j ,z , where pci
f j ,z is the feature’s depth in the

i th camera frame. Before normalizing the feature’s coordinate
in the camera frame, we will check pci

f j ,z to maintain the
numerical stability. When pci

f j ,z is larger than a given threshold,
such as 5 cm, we take the feature’s measurement in the
ci frame valid and proceed with the following projection
procedure. Otherwise, the feature will be considered lost in
this camera frame, its projection process will be stopped, and
its predicted tracking length will be recorded as i .

Applying the distortion model and parameters, we get the
distorted normalized coordinates

[
xui

d, j yui
d, j

]
in the ui frame as

follows:xui
d, j = pui

f j ,x d j + 2 p1 pui
f j ,x pui

f j ,y + p2

(
r2

j + 2(pui
f j ,x )

2
)

yui
d, j = pui

f j ,yd j + 2 p2 pui
f j ,x pui

f j ,y + p1

(
r2

j + 2(pui
f j ,y)

2
)

(4)

where d j = (1 + k1r2
j + k2r4

j ); k1, k2, p1, and p2 are the
camera’s distortion parameters; and r j denotes the distance
between the feature and the origin of the ui frame, which has a
relationship with the normalized coordinates of r2

j = (pui
f j ,x )

2
+

(pui
f j ,y)

2. Then, utilizing the camera projection model, we can
get the feature’s coordinates in the p frame, which can be

represented as follows:upi
j

v
pi
j

1

 =
 fx 0 cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

xui
d, j

yui
d, j
1

 (5)

where K is the camera’s intrinsic matrix and [upi
j v

pi
j ] are

the feature’s pixel coordinates. Then, we determine if the
feature is located outside the image with its pixel coordinates.
If the feature is outside the image, indicating a tracking failure,
the feature’s projection procedure will be interrupted. On the
contrary, the predicted pixel coordinates will be recorded for
the following calculation.

Afterward, we perform the same projection process on the
other prior camera poses until the feature is lost or reaches the
end of the prior poses. The iterative procedure is applied to
all the 3-D feature points to predict their tracking information
in the prior camera frames.

3) Features Distribution Weight: To reassign the feature
number in the image regions according to the predicted
tracking information, it is essential to define a reasonable
metrics as the feature distribution weight. In two-view geom-
etry, the parallax reflects the constraint of camera poses on
the feature’s position [28]. Features with more considerable
parallax typically exhibit lower depth errors after triangulation.
As a correspondence, the more significant parallax features
contribute more constraints to the navigation state in visual
localization. In addition, the longer tracking length, i.e., the
more feature measurements, provides more constraints on the
camera poses, resulting in a more accurate navigation result.
Therefore, with considering both the two-view parallax and
the tracking length, we employ the total tracking parallax as
the distribution weight in the proposed method, i.e., the sum
of every two-consecutive-frame parallax of the feature’s all
tracking frames. The total tracking parallax of the feature p f j

is denoted as follows:

ω j =

N−1∑
i=0

arccos


(

Rci+1
ci pci

f j

)
· pci+1

f j∥∥Rci+1
ci pci

f j

∥∥∥∥ pci+1
f j

∥∥
 (6)

where N is the predicted tracking length, Rci+1
ci is the rotation

matrix from the i th camera frame to the (i + 1)th camera
frame, and pci

f j
and pci+1

f j
are the predicted coordinates in the

i th camera frame and the (i + 1)th frame, respectively.
The current 3-D features are allocated to image grids based

on their current pixel coordinates, i.e., coordinates in the zeroth
camera frame. Corresponding to the 2-D p frame, there are also
two indices for each image grid, including x- and y-directions.
The belonged image grid index for a 3-D feature point can be
obtained from

x = floor
(

n px · u
c0
f j

/
Iw

)
y = floor

(
n py · v

c0
f j

/
Ih

)
(7)

where floor(·) denotes round down operation, [Iw Ih] are
the image width and height, and n px and n py are the grid
numbers in the u- and v-directions, respectively. The features
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with the same grid indices are clustered into a set, denoted as
Fx,y . Then, the distribution weight ωx,y of the image region
corresponding to the feature set Fx,y is obtained from

ωx,y =


1

size(Fx,y)

∑
l∈Fx,y

ωl , size(Fx,y) > 0

0, size(Fx,y) = 0.

(8)

Then, we can get the feature number distribution weight
matrix of the image

W n px×n py =

 ω0,0 · · · ω0,n py−1
...

. . .
...

ωn px−1,0 · · · ωn px−1,,n py−1

. (9)

Considering the incorporation of feature tracking length and
parallax into the distribution weight, features extracted from
regions with larger weights generally exhibit improved track-
ing length and parallax. Consequently, by distributing a great
number of features to such image regions, we can effectively
enhance the overall feature tracking qualities. The feature
number redistribution algorithm is detailed in Section III-B4.

4) Feature Number Redistribution: Before feature number
reassignment, we should preset critical parameters, including
the total feature number m, the grid numbers n px and n py in the
u- and v-directions, and the feature’s minimum distance dpx .
The maximum feature number n in one grid is also calculated
in advance using the above parameters and the image size.
Then, the designed feature number redistribution algorithm is
employed to reasonably redistribute the features to each image
region according to the weight matrix.

As depicted in Algorithm 1, we first initialize several key
parameters before proceeding with feature distribution. During
this initialization, the current total weight ωt is set to 1, the
reassigned feature number N is initialized as a zero matrix,
and the weight matrix M is reordered by value. Subsequently,
the total features are assigned to each image grid based on their
weights. Given that the feature number assigned to a single
grid is finite, there might be some remaining features after
distributing features to all grids with nonzero weight. In such
cases, we evenly distribute the remaining features across these
grids. Here, we provide the details of the two-step distribution.

In the first weighted distribution, we traverse through the
grids by their weight values and assign numbers of features.
We first calculate the proportion of the current grid weight
in relation to the remaining total weight. Subsequently, the
feature number of this grid is computed by multiplying this
proportion with the remaining total feature number. Moreover,
the obtained number is rounded up and constrained to the
maximum number of one grid n. The final assigned feature
number is saved in the feature number matrix N . Notably,
the dynamic proportions for feature distribution prevent the
occurrence of zero features in regions with lower weights.
Finally, the remaining total weight and total number of features
are updated, and the current grid weight is removed from the
weight matrix M. This process iterates through the other grid
weights in M until either the remaining total weight or the
remaining feature number reaches 0.

Algorithm 1 Feature Number Redistribution Algorithm
Input: weight matrix W , total feature number m, maximum

feature number in one grid n.
Output: feature number matrix N

Initialize current total weight ωt = 1, set N = 0.
reorder each element of W by value.
for wi ∈ W do

if wi is 0 or m is 0 then
break;

end if
calculate feature number a = ceil(m ∗ wi/wt );
if a > n then

a← n;
end if
m ← m − a; wt ← wt − wi ; W ← W\wi ;
assign a to N by the grid index

end for
while m > 0 do

wi ← the first data in W
calculate feature number a = ceil(m/si ze(W))

m ← m − a; W ← W\{wi };
assign a to N by the grid index

end while

The second average distribution will be executed if there
are remaining features after the first distribution step. In this
step, the feature number assigned to a single grid is calculated,
rounded up, and then assigned to the first grid in the M.
Then, we update the remaining feature number n and remove
this grid from the remaining weight matrix M. The process
continues until the remaining feature number reaches 0.

The required feature number in each grid is calculated
with the assigned feature number matrix N and extracted from
the new image. The pixel measurements of the new feature
points are added to the feature buffer. Subsequently, the current
features form pose constraints in the visual navigation system
for state estimation, and the visual measurements of the lost
features will be removed from the feature buffer.

C. Implementation in MSCKF-Based VINS

To verify the enhancement of the proposed method for
visual navigation performance, we implement and evaluate the
P2GD method in an MSCKF-based VINS.

1) MSCKF-Based VINS: In the MSCKF-based VINS, the
camera poses are included in the state vector as clones rather
than the feature points, which significantly reduces the state
dimension and further reduces the computation burden in the
state propagation and update [29]. The state vector of the
MSCKF-based VINS is composed of the current IMU error
state x Ik and the error of cloned n historical camera poses
δT w

c1
, . . . , δT w

ci
, . . . , δT w

cn
, which is denoted as follows:

xk =

[(
x Ik

)T (
δT w

c1

)T
· · ·

(
δT w

cn

)T
]T

. (10)

Denote the covariances of the IMU state, the cloned poses,
and that between the IMU state and clones poses as P Ik ,
PTk , and P Ik Tk , respectively. With the state transition matrix
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8k , which is acquired from the IMU kinematic equation, the
system state covariance can be propagated as follows:

Pk+1 =

[
P Ik+1 8k P Ik Tk

PT
Ik Tk

8T
k PTk

]
(11)

where P Ik+1 = 8k P Ik 8
T
k + Qk is the updated IMU state

covariance and Qk is the propagation noise. The augmentation
or marginalization of a new camera pose or the oldest camera
pose from the covariance can be referred to [24].

In MSCKF-based VINS, features lost in the current frame,
or those reaching the maximum tracking length are selected
to perform measurement update. The measurement equation is
formulated in the p frame. The pixel coordinate of the feature
p f j

in the i th p frame can be calculated as follows:

ppi
f j
= hd

(
hp

(
ht

(
Rw

ci
, pw

ci
, pw

f j

)
, K

)
, ξ

)
(12)

where ht , hp, and hd are the transformation, projection,
and distortion functions, respectively, and ξ is the camera’s
distortion parameters. Performing perturbance in the projec-
tion process and integrating all measurements of the feature,
we obtain the measurement equation at timestamp k

z p j = H x,k xk + H f δ pw
f j
+ np j (13)

where H x,k is the measurement Jacobian to the state vector,
H f is the measurement Jacobian to the feature, and np j is the
measurement noise. The null-space projection can eliminate
the unknown feature’s position in the measurement equation;
then, the standard Kalman update can be performed.

2) Implementation: Integrating the aforementioned key
components, we have developed an MSCKF-based VINS
based on the open-sourced OpenVINS [6] platform. In addi-
tion, we also incorporate the proposed P2GD method into the
front end of our VINS framework. In the front end of our
VINS framework, optical-flow tracking is initially employed
to obtain new and associated features upon the arrival of a
new image. Subsequently, the required numbers of features
are determined based on the preassigned count. Supplementary
features are then extracted from various regions within the new
image, and the required features are selected by their response
values and the required numbers. The extracted features of the
front end are utilized in the measurement update process of
the VINS back end. While in the front end of VINS utilizing
the proposed P2GD algorithm, we first query the prior camera
poses and the current tracking features for the P2GD algorithm
to determine the assigned numbers of features in each image
region. Following this, we also perform feature tracking on
the new image and identify the associated features with that
in the old image. The required number of features in each
image region is then calculated using the redistributed feature
number provided by the P2GD algorithm. Finally, we extract
the required features, employing a process similar to the
aforementioned new feature extraction and selection method.

In the feature association, we utilize the RANSAC method
along with bidirectional tracking inspection to validate the
feature tracking results. In the measurement update process
of the VINS back-end, we employ the chi-square check to
efficiently eliminate measurement outliers. We also designed

some strategies in our implementation to keep the robustness
and lightweight of the P2GD. Once the feature’s triangulated
position is accurate enough, the feature’s 3-D position will
be reserved, and the pretriangulation for this feature will
no longer be performed, which controls the computation
burden. We empirically consider the feature’s position accurate
enough when its valid position is triangulated from more than
10 camera poses. Besides, the 3-D features that reach the
maximum tracking length will remain in the feature buffer
after its measurement update to compensate for the sparse
features lacking reflection of the 3-D scene. Also, to reduce
the feature buffer size, the 3-D features that cannot be tracked
in the first predicted camera poses will be abandoned. As the
feature’s maximum track length in VINS corresponds to the
size of the slide window, we set the size of the prior poses to
the slide window’s length. Besides, since every image will be
taken as the keyframe in OpenVINS, the prior camera poses
used in our method have the same frequency as the image
data’s rate. Other parameters, including the maximum feature
number, the grid size, and the minimum feature distance, will
be set according to the image size employed in VINS.

IV. EXPERIMENTS AND RESULTS

A. Experiments and Evaluation Description

1) Experiments Description: We evaluate the enhancement
of the proposed P2GD method through a VINS, and both
the public dataset and our private dataset are employed in
our experiments. Specifically, the public dataset is the KAIST
urban dataset [30], collected from a commercial car, while the
private dataset is collected from a wheeled robot. It is noted
that the prior camera poses in our experiments are acquired
from the truth trajectories rather than the poses from the real-
time motion-planning module due to the limitation of the test
conditions. Nevertheless, it still convinces enough.

The public KAIST urban dataset is a vehicle’s multisensor
dataset collected in a complex urban environment, where
only the left camera and the industrial-grade MEMS IMU
measurements are utilized in our experiments. The camera
has a resolution of 1280 × 560 and a frame rate of 10 Hz,
while the IMU has a data rate of 100 Hz. For this dataset, the
maximum feature number in one image is set to 180, the grid
size is 10 × 6, and the minimum distance between feature
points is 40 pixels. Besides, the slide window’s size is 20;
thus, 20 prior poses are required in each prediction process.
The large vehicle’s speed causes a big accumulated pose error
during measurement updates in VINS. Therefore, we do not
employ the first estimate Jacobian (FEJ) for the KAIST dataset
to avoid large linearization errors in the measurement matrix.
We also initialize the VINS with given accurate initial state and
IMU bias for the KAIST dataset to prevent any interference
with the evaluation. Five groups of data, namely, urban28,
urban30, urban32, urban38, and urban39, are evaluated in
our experiments, of which the total time is 8321 s, and the
total distance is 45 525 m.

Our private dataset is collected in the typical campus scene
with a wheeled robot, as shown in Fig. 4. The left gray camera
and the industrial-grade MEMS IMU are employed in our
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Fig. 4. Test wheeled robot of the private dataset.

experiments. The camera’s resolution is 800 × 600. The data
rates of the camera and IMU are 10 and 200 Hz, respectively.
The truth trajectory of the private dataset is smoothed from
the navigation-grade IMU and GNSS RTK positioning results.
In our experiment, the maximum keypoints number in one
image is 150, the image grid size is 8 × 6, the minimum
keypoints distance is 30 pixels, and the size of the sliding
window is 20. Our private dataset has seven groups of robot
data, denoted as Robot-A–Robot-G, and the total time and
distance are 8025 s and 10 498 m, respectively. The private
dataset’s trajectories are shown in Fig. 5.

2) Evaluation Method: We validate the benefits of the
proposed P2GD algorithm using a VINS. To evaluate the effec-
tiveness of the proposed active feature distribution method,
we consider the widely used inactive distribution method,
namely, the grid-based method, as the baseline. In the tables
of this section, the VINS employing the baseline grid-based
method is denoted as “baseline,” while that incorporating our
P2GD algorithm is denoted as “proposed method.” Notably,
the baseline method and our proposed method utilize the
same state estimator and system parameters to ensure a
fair comparison. Considering that the P2GD algorithm is
implemented and evaluated in the filter-based VINS, we also
compare the performance of the baseline and proposed method
with the state-of-the-art MSCKF-based method, OpenVINS
[6]. The system parameters of OpenVINS are optimized to
the best extent for the test dataset.

Both feature tracking qualities and navigation accuracy are
considered as the evaluation metrics. During VINS operation,
the actual feature tracking status is recorded to calculate
the tracking qualities, including the feature’s tracking length,
parallax between two consecutive frames, and total track-
ing parallax. Besides, proportions of features with different
tracking lengths are also computed to analyze enhancements
in the feature tracking length. For the navigation accuracy
evaluation, EVO [31] is adopted to calculate the positioning

Fig. 5. Test trajectories of the private dataset.

TABLE I
AVERAGE TRACKING QUALITIES IN THE KAIST URBAN DATASET

error quantificationally, including the absolute error of the
total test sequence [the absolute translation error (ATE) and
absolute rotation error (ARE)] and the relative error of tra-
jectory fragments with different lengths [relative translation
error (RTE) and relative rotation error (RRE)]. Furthermore,
the robustness of the proposed method is also evaluated by
introducing certain position and attitude noises into the prior
carrier poses intentionally.

B. Public Dataset

1) Feature Tracking Quality: Considering that the
open-sourced OpenVINS also equips with a grid-based
feature distribution method, the feature tracking qualities
of OpenVINS and the “baseline” are similar. Therefore,
in terms of the feature tracking quality, we only compare
the “proposed method” with the “baseline” to evaluate the
performance of the P2GD algorithm. The features’ average
tracking qualities with the “baseline” and the “proposed
method” in the public KAIST dataset are counted in Table I,
while Table II presents the proportion of features with
different tracking lengths, including the minimum tracking
length (one frame), maximum tracking length (20 frames),
and other specific tracking lengths, such as five frames, ten
frames, and 15 frames.

In Table I, the features’ average tracking length, two-view
parallax, and total parallax of the proposed method are more
extensive than those of the baseline method across all five
groups of KAIST data. Statistically, the proposed method has
an improvement of 0.15 frames, 0.48◦, and 2.91◦ in average
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TABLE II
PROPORTION OF FEATURES WITH DIFFERENT TRACKING LENGTHS IN THE

KAIST URBAN DATASET

tracking length, two-view parallax, and total tracking parallax,
respectively. From the proportion in Table II, the proportion of
features that can only be tracked once is substantial, primarily
due to the vehicle’s high speed and the presence of many
dynamic objects in the test scene. The proposed method
redistributes the feature points according to the predicted total
tracking parallax, assigning a few features in the region where
features are quickly lost, such as the marginal region of the
image. As a result, the proportion of features with once track-
ing in our proposed method decreases by 5.3% numerically.
Our method also reduces the proportion of feature points with
the maximum tracking length. It is related to the reduction
of the straight-ahead long-tracking feature points. As the car
almost keeps moving ahead, the straight-ahead feature points
can be tracked stably. Nonetheless, the straight-ahead feature
points contribute little to the localization because of low valid
parallax. The proposed method assigns less weight to the
straight regions, such that the feature points with maximum
tracking length in our method decrease. Importantly, this
reduction would not negatively affect navigation accuracy.
Correspondingly, the proportions of features with all other
tracking lengths, such as 5 frames, 10 frames, and 15 frames in
Table II, show certain improvements in our proposed method.
These features generally exhibit larger tracking parallax and
provide the best contributions to navigation accuracy.

2) Navigation Accuracy: The vehicle’s trajectories in the
KAIST dataset are solved by the OpenVINS, “baseline,”
and “proposed method.” To display the navigation accuracy
intuitively, we present the test trajectories of urban39 data in
Fig. 6, with start points of all test trajectories aligned with
the truth trajectory (note that the start point of OpenVINS is
different since a slightly delayed initialization). Since a refined
INS algorithm and a more suitable IMU error model [32]
are utilized in both our baseline and proposed methods,
their trajectories exhibit a notable improvement in smoothness
compared with those of OpenVINS, especially evident in the
subfigure of Fig. 6. When it comes to the overall trajectory,
our baseline method also aligns better with truth trajectory
compared with OpenVINS, confirming the superiority of our
baseline method. From the trajectories of the proposed and

Fig. 6. Trajectories in KAIST urban39 data.

TABLE III
ABSOLUTE POSE ERROR IN THE KAIST URBAN DATASET

baseline methods, the proposed method demonstrates lower
position error and better fitness with the truth trajectory, which
benefits from the superior features’ tracking qualities of the
proposed method.

Since there are many stationary moments in the KAIST
dataset and the truth trajectories are not continuous, we only
compare the ATE and ARE in the navigation performance
evaluation. The absolute pose error in the KAIST dataset
is counted and shown in Table III. According to the table,
both our baseline and proposed methods exhibit significantly
superior localization performance compared with OpenVINS,
coincident with the results depicted in Fig. 6. To facilitate a
more intuitive display and comparison of localization results,
we exclusively evaluate our proposed method against our
baseline method in subsequent tests.

Because of the extracted features with larger tracking par-
allax, the proposed method demonstrates superior absolute
position accuracy across the five test trajectories. Most of the
AREs of the proposed method are less than that of the baseline
method. The statistical accuracy of the five trajectories indi-
cates that the proposed method reduces the ATE from 16.77 to
13.22 m and the ARE from 2.27◦ to 2.14◦. In particular, the
statistical ATE of the proposed method has an improvement
of 21%.

C. Private Dataset

1) Feature Tracking Quality: The features’ tracking qual-
ities in our private dataset are statistics in Tables IV and V.
As the private dataset is collected in a richly textured campus
with a slow-speed wheeled robot, the number of features
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TABLE IV
AVERAGE TRACKING QUALITIES IN THE PRIVATE ROBOT DATASET

TABLE V
PROPORTION OF FEATURES WITH DIFFERENT TRACKING LENGTHS IN THE

PRIVATE ROBOT DATASET

tracked only once is decreased, while those reaching the
maximum tracking length are increased. The proposed method
assigns low weight in the straight-ahead image region, where
feature points can be tracked longer. As a result, the average
keypoint tracking length of the proposed method is smaller
than that of the baseline method, as shown in Table IV.
Nonetheless, the average two-view parallax and total parallax
of the proposed method are significantly improved, with the
increments of 0.45◦ and 3.52◦, respectively. The proportion
of feature points with different tracking lengths in our private
dataset exhibits the same improvement as that in the KAIST
dataset, which fully proves the enhancement of our method on
the features’ tracking qualities.

2) Absolute Navigation Accuracy: The absolute pose errors
in our private dataset are first analyzed. We plot the trajectories
of the Robot-C data in Fig. 7. The baseline trajectory diverges
from the truth trajectory after the robot moves. In contrast, the
trajectory of our proposed method demonstrates better consis-
tency and fitness with the truth trajectory. Table VI statistics
the ATEs and AREs of the seven groups of private data.
Also benefitting from the larger features’ tracking parallax, the
proposed method obviously outperforms the baseline method
across almost all test groups. In terms of the root-mean-square
(rms) value of the seven test groups data, we observe that
the proposed method reduces ATE from 3.28 to 2.36 m and
reduces ARE from 1.55◦ to 1.02◦. Statistically, the proposed
method achieves the improvements of 28% in ATE and 34%

TABLE VI
ABSOLUTE POSE ERROR IN THE PRIVATE ROBOT DATASET

Fig. 7. Trajectories in private Robot-C data.

Fig. 8. 10-m RTEs of private Robot-G data.

in RTE, which strongly verifies the superior navigation per-
formance of the proposed method.

3) Relative Navigation Accuracy: The truth trajectories in
our private dataset are acquired from a navigation-grade IMU,
which ensures the high-precision relative pose. Therefore,
we also evaluate our private dataset’s RTEs and RREs of
different trajectory segments. We select four kinds of trajectory
lengths, that is, 10, 50, 100, and 200 m, to evaluate the relative
pose accuracy. Taking the Robot-G as an example, the 10-m
RTEs of both proposed and baseline methods are plotted in
Fig. 8. In this figure, we pick some typical regions and mark
them with green, purple, and pink colors. In the green regions,
the position error of the baseline method enlarges obviously,
while the accuracy of the baseline method in the purple
and pink regions slightly outperforms that of the proposed
method.

We illustrate the 3-D feature’s position and the feature
redistribution weight at one specific position within the green
regions in Fig. 9. In Fig. 9(a), there are no 3-D feature
points on the straight building, as features on the building
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TABLE VII
RELATIVE POSE ERROR IN THE PRIVATE ROBOT DATASET

Fig. 9. (a) Current 3-D features at one position of the green regions; the red
points are triangulated in the current frame, and the green points are saved
in the feature buffer. (b) Visualization of feature redistribution weight with
normalized color scaling.

lack enough parallax. Thus, the corresponding image region
exhibits a very low weight, as depicted in Fig. 9(b). In contrast,
the proposed method redistributes more features in image
regions with enough parallax, including the ground and objects
on both sides. Therefore, the contribution of features with
larger valid parallax to the navigation state estimation is fully
exploited by the proposed methods. As a result, the RTE in
the green region of the proposed method is restricted to an
average level.

The predicted feature trackings at one position in the purple
region and one position in the pink position are shown in
Fig. 10. The predicted features’ tracking in Fig. 10(a) will
be interrupted by the suddenly emerged people, such that
many features redistributed by our method cannot be tracked
continuously. As a result, the RTE of the proposed method
increases. In the pink region, the temporary shading by trees
also destroys the predicted features’ tracking in Fig. 10(b) and
enlarges the RTE of the proposed method slightly.

We count all the relative pose errors in our private dataset in
Table VII and calculate the rms pose error of the seven data.
The RTEs and RREs of the proposed method outperform that
of the baseline method in almost all data and all trajectory
lengths. The statistical rms errors of the proposed method are
dramatically decreased than that of the baseline method. For
example, the 100-m RTE is decreased from 1.86% to 1.22%.

In the relative navigation accuracy evaluation, the sudden

Fig. 10. (a) Predicted feature trackings at one position of the purple regions;
the green points are the current pixel coordinates, and their connected yellow
points are their predicted pixel coordinates. (b) Predicted feature trackings at
one position of the pink region.

appearance of dynamic objects and temporary obstacles dis-
rupts the expected continuous tracking of the feature points,
leading to a light degradation in the navigation accuracy
of the proposed method. Consequently, the proposed P2GD
cannot act out its advantages in the scenes with frequent and
sudden appearance of dynamic objects. Since these dynamic
objects cannot be consistently tracked and triangulated suc-
cessfully, they are not taken into account in the feature
distribution process. Therefore, the degradation caused by
dynamic objects does not persist over an extended period.
Despite these challenges, the statistical results in Table VII
affirm that the proposed P2GD still significantly enhances
navigation accuracy. The thorough solution for this issue will
be detecting the dynamic objects and masking them from the
feature point distribution process, which is one of our future
works.

D. Robustness Test and Analysis

In our experiments, the truth trajectories served as the
carrier’s prior poses of the proposed method. However, the
prior poses, which are output by the path planning module
in actual applications, are not perfectly accurate. In order
to evaluate the robustness of the proposed method, we add
white noise into the truth trajectories of our private dataset
to simulate the inaccurate prior poses. Considering that the
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TABLE VIII
ABSOLUTE POSE ERROR IN THE PRIVATE ROBOT DATASET WITH DIFFERENT NOISES

Fig. 11. Boxplots of RTEs with different position noise intensities and
different trajectory lengths.

wheeled vehicle has only two degrees of freedom, we add
noise specifically to the horizontal position or heading angle.
Multiple intensities of position and heading angle noise are
tested to comprehensively evaluate the robustness. Specifically,
the position noise intensities include 0.05, 0.10, 0.15, 0.20, and
0.25 m, and the heading angle noise intensities are 0.5◦, 1.0◦,
1.5◦, 2.0◦, and 2.5◦. Considering the robot’s maximum velocity
of 1.5 m/s, the common heading angular rate of 20◦/s, and the
prior pose rate of 10 Hz, we determine that the maximum
increments in distance and angle provided by the prior pose
are 0.15 m and 2◦, respectively. Consequently, the intensity of
position noise at 0.25 m and heading angle noise at 2.5◦ is
deemed sufficient for the robustness evaluation of our private
dataset. To avoid the randomness of random white noise on the
results, every test result is averaged from three identical tests.

We compare the navigation accuracy in our private dataset,
including RTEs and ATEs, to verify the robustness of our
proposed method. The RTEs are calculated with the trajectory
lengths of 10, 50, 100, and 200 m. In the RTEs with different
noise intensities and different trajectory lengths, the RTEs of
the seven groups of data are taken as a collection to plot a
boxplot. We plot and compare all the boxplots of the baseline
method, the proposed method, and the proposed methods with
different noise intensities. Fig. 11 is the boxplots with different
horizontal position noises, and Fig. 12 is that with different
heading angle noises. Compared with the proposed method,
the position errors enlarge with different degrees when adding
position error and heading angle error to the prior poses in
Figs. 11 and 12. Even though, all RTEs of the proposed
method with added certain noise are still obviously smaller
than that of the baseline method. Furthermore, the RTEs’
enlargement is not positively correlated with the added noise
intensity, which further proves the robustness of the proposed
method. The statistical results of ATEs and AREs are shown

Fig. 12. Boxplots of RTEs with different heading angle noise intensities and
different trajectory lengths.

TABLE IX
AVERAGE RUNTIME (ms) IN DIFFERENT TEST DATA

in Table VIII. Although certain strong noise is added to the
prior poses of the proposed method, it still demonstrates better
absolute translation and rotation accuracy than the baseline
method. In general, the proposed method demonstrates supe-
rior robustness when the prior poses are inaccurate.

E. Runtime Analysis

To analyze the real-time performance and the computation
burden of the proposed method, we evaluate the runtime of
the proposed method on a desktop PC (AMD R7-3700X and
32-GB RAM) using our private robot dataset. The average
running times of processing one frame image in different data
are summarized in Table IX. In this table, “P2GD” denotes the
running time of the proposed method, “Track” is the time taken
for feature extraction and tracking, “Update” represents the
duration of measurement update, and “Other” includes IMU
state propagation and covariance marginalization. The average
runtime of the P2GD algorithm is only 0.84 ms, significantly
shorter than that of feature extraction and measurement update.
Compared with the total runtime of VINS, the runtime of
the P2GD algorithm takes quite a small proportion, demon-
strating its minimal impact on the real-time performance of
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VINS. In terms of the total runtime of the proposed and
baseline methods, the total runtime of our proposed method
only increases by 1.04 ms, indicating comparable real-time
performance in practical applications.

V. CONCLUSION

Taking the features’ future tracking qualities into consid-
eration, this article proposed a P2GD method. The primary
objective is to improve the features’ tracking parallax and
further enhance the localization accuracy of the visual nav-
igation system. Specifically, the carrier’s prior poses, together
with the 3-D scene represented by the sparse triangulated
3-D features, are employed to predict the features’ future
tracking of each image region. Then, the feature redistribution
algorithm reassigns the feature number into different image
regions according to the predicted tracking parallax. Finally,
the corresponding number of features will be extracted in every
image region and employed in the VINS estimator.

The proposed method is implemented in an MSCKF-based
VINS and evaluated with both the public KAIST urban
dataset and our private robot dataset. The experiment results
consistently indicate that the proposed method demonstrates
enhanced tracking length and total tracking parallax in fea-
tures’ tracking qualities and superior navigation accuracy of
VINS compared with the baseline grid-based method. More-
over, even adding certain noise to the prior poses intentionally,
the proposed method still outperforms the benchmark method
in terms of navigation accuracy, yielding superior robustness.

The analysis of relative position error exposes that the
sparse 3-D features of the proposed method cannot represent
the suddenly emerged dynamic objects and occlusions in
the 3-D environment. Therefore, future work will integrate
a perception–prediction network into the proposed method,
enabling accurate recognition and prediction of dynamic object
trajectories. This integration aims to mitigate the influence of
moving objects on predicted feature tracking by adjusting the
feature distribution weight accordingly.
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