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A Robust and Efficient IMU Array/GNSS Data
Fusion Algorithm

Tisheng Zhang , Man Yuan , Liqiang Wang , Hailiang Tang , and Xiaoji Niu

Abstract—The inertial measurement unit (IMU) array, com-
posed of multiple IMUs, has been proven to be able to
effectively improve the navigation performance in inertial
navigation system (INS)/global navigation satellite system
(GNSS) integrated applications. The conventional IMU-level
fusion algorithm, using IMU raw measurements, is straight-
forward and highly efficient but yields poor robustness when
the IMU array is not rigidly installed. On the contrary, the
classic INS-level fusion algorithm, using navigation results
from each IMU, is immune to the nonrigid installation of
the IMU array but suffers a heavy computation load. Here,
we propose a robust and efficient INS-level fusion algorithm
for IMU array/GNSS (eNav-Fusion). Each IMU in the array
shares the common state covariance (P matrix) and Kalman gain (K matrix), and the navigation solutions of all IMUs
are eventually fused to produce a more accurate solution. The proposed eNav-Fusion was fully evaluated with rigidly
and nonrigidly installed IMU arrays. For a rigid 16-IMU array, the processing time of eNav-Fusion was close to that of the
IMU-level fusion and only 1.22× to that of the INS/GNSS algorithm for a single IMU; and the navigation performance was
improved by 2.51×, as expected for such scale of array. For a nonrigid 6-IMU array, in which case the traditional IMU-level
fusion does not work, eNav-Fusion still maintained the same accuracy as the classic INS-level fusion algorithm, while
the computation load is still close to that of the IMU-level fusion. In conclusion, the proposed eNav-Fusion achieves the
same robustness as the INS-level fusion, while only consuming comparable computational complexity to the IMU-level
fusion.

Index Terms— Data fusion, inertial measurement unit (IMU) array, inertial navigation system (INS)/global navigation
satellite system (GNSS), micro-electromechanical system (MEMS) IMU.

I. INTRODUCTION

INERTIAL measurement unit (IMU), composed of a gyro-
scope and an accelerometer, is used to measure acceleration

and angular velocity [1], [2]. Inertial navigation system (INS)
is an autonomous navigation system based on Newton’s
classical mechanics, utilizing IMU measurements to com-
pute high-frequency position, velocity, and attitude [3]. INS
is often integrated with global navigation satellite system
(GNSS) [4]. Micro-electromechanical system (MEMS) IMU
has the advantages of small size, low power consumption,
and affordability [5], [6], rendering it widely applicable in
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civilian fields [7]. However, due to drawbacks in the design
and manufacturing process, MEMS IMUs have the problem
of poor parameter stability. The error of the computed navi-
gation solution accumulates rapidly over time, restricting its
suitability for scenarios demanding high precision.

Since the 1960s, researchers have been investigating IMU
arrays [8]. Utilizing multiple IMUs to construct an IMU
array enables the detection of individual IMU failures and the
expansion of the dynamic measurement range [9]. In [10],
two GPS/INS systems were employed to estimate the deck
bending of an aircraft carrier. In [11], multiple IMUs were
installed at different locations on an aircraft to measure the
flexible deformation of the body. The ability of the IMU array
to mitigate random errors is also a subject of considerable
interest. According to the random error theory, an IMU array
composed of N IMUs with independent measurement errors
can reduce the random error by a factor of (N )1/2 after
data fusion [12]. Therefore, employing multiple MEMS IMUs
to form an IMU array and designing a suitable data fusion
algorithm can reduce random errors and enhance navigation
performance without a significant cost increase. Research on
the navigation performance and data fusion algorithm of IMU
arrays has attracted widespread attention.
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Fig. 1. Two data fusion algorithms for IMU array. Nav represents
Navigation; Sol represents solution. (a) IMU level. (b) INS level.

The data fusion algorithm for the IMU array plays a crucial
role in improving navigation performance and can be classified
into two types based on the object of data fusion: IMU-
level fusion algorithm and navigation solution level (INS-level)
fusion algorithm, as illustrated in Fig. 1. The IMU-level fusion
algorithm integrates measurements from multiple IMUs to pro-
duce a more precise measurement. This refined measurement is
subsequently employed for integrated navigation, contributing
to an enhanced navigation solution. The INS-level fusion
algorithm initially conducts integrated navigation on each
IMU, such as INS/GNSS integrated navigation. Subsequently,
it merges the navigation solutions from all IMUs to yield a
more precise solution.

When considering the computational complexity, there is
a significant difference between IMU-level and INS-level
fusion algorithms. The former typically directly fuses IMU
measurements, resulting in computational complexity nearly
equivalent to the INS/GNSS integrated navigation algorithm
for a single IMU. The latter requires performing integrated
navigation on multiple IMUs separately or expanding the state
vector, so the computational complexity increases rapidly with
the increase in the number of IMUs. However, the INS-level
fusion algorithm exhibits greater robustness, allowing for its
application in a broader range of scenarios. Particularly when
the IMUs are nonrigidly connected, the lack of a definite
transformation relationship between measurements of different
IMUs theoretically prevents fusion at the IMU level [9].
In such cases, the INS-level fusion algorithm remains appli-
cable, which can still effectively reduce random errors and
enhance navigation performance.

Aiming at the limitations of the IMU-level fusion algorithm
for nonrigid scenes and the high computational complexity of
the navigation solution level fusion algorithm, we propose a
robust and efficient navigation solution level IMU array/GNSS
data fusion algorithm (eNav-Fusion) based on Kalman filter
(KF) [13]. The proposed eNav-Fusion exhibits the same ability
to improve navigation performance in both rigid and nonrigid
scenarios, proving its robustness. Besides, the computational
complexity is nearly equivalent to the integrated navigation
algorithm for a single IMU. The fundamental concept of the
proposed eNav-Fusion is to share the common operational
steps and similar results present in the integration of each IMU
with GNSS to achieve substantial computational savings. The
proposed eNav-Fusion maximizes computational savings with-
out causing a significant impact on navigation performance.

The main contributions of our work are as follows.
1) A robust and efficient IMU array/GNSS data fusion

algorithm is proposed by sharing the same operation
steps and similar operation results when each IMU in the
array is integrated with GNSS. Specifically, each IMU
within the array shares the same state covariance and
Kalman gain. The navigation solutions from all IMUs
are fused to produce a more accurate one.

2) The positioning accuracy and computational complexity
of the proposed eNav-Fusion are analyzed theoretically,
including the qualitative analysis of the navigation per-
formance improvement and the quantitative analysis of
computational complexity.

3) Rigid and nonrigid IMU arrays are employed for
experimental validation on vehicles and robot carriers,
respectively. The navigation performance and compu-
tational complexity of the proposed eNav-Fusion are
quantitatively evaluated.

The structure of the rest of this article is as follows.
We give a brief literature review in Section II. The proposed
eNav-Fusion is presented in Section III. The experiments and
results are discussed in Section IV for quantitative evaluation.
Finally, we conclude with a summary and prospects for future
work in Section V.

II. RELATED WORKS

This section discusses the related works on the performance
and data fusion algorithm of the IMU array. The performance
includes the static noise performance and the navigation
performance. As mentioned above, the data fusion algorithm
for the IMU array can be classified into IMU-level fusion
algorithm and INS-level fusion algorithm.

A. IMU Array Performance
The static noise performance of the IMU array was first

studied by researchers, and subsequent studies in recent years
have further investigated this aspect. Skog et al. [9], Green-
heck et al. [14], Greenheck [15], Bose et al. [16], and Jing
and Zhao [17] designed IMU arrays composed of 14, 16,
16, 32, and 32 MEMS IMUs, respectively, and evaluated the
static noise performance of IMU arrays by indicators, such as
angular/velocity random walk and bias instability. The results
from the studies mentioned above consistently demonstrated
that the static noise performance of IMU arrays could achieve
a relatively ideal improvement effect. That is, the improvement
closely approached the theoretical value (N )1/2, where N is
the number of IMUs.

While the static noise performance is insufficient to fully
reflect the positioning accuracy of the IMU array during nav-
igation, numerous studies have been conducted to explore the
navigation performance of the IMU array. Clausenl et al. [18]
integrated the measurements from four IMUs, achieving
enhanced navigation performance. The IMU array designed
by Waegli et al. [19] comprised four IMUs installed on a
regular tetrahedron, and the positioning error was reduced by
30%. Guerrier [20] designed a simulation model to establish
a precise relationship between the number of sensors in the

Authorized licensed use limited to: Wuhan University. Downloaded on August 19,2024 at 01:08:48 UTC from IEEE Xplore.  Restrictions apply. 



26280 IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

array and the improvement of navigation performance. The
results indicated that fusing four IMUs could decrease the
positioning error by approximately 40%, while fusing ten
IMUs could reduce the positioning error by around 60%. Ban-
croft [21] fused two, three, four, and five IMUs, reducing 25%,
29%, 32%, and 34% in plane positioning errors, respectively.
Mi et al. [22] proposed a performance enhancement method
for the IMU array based on neural network and geometric
constraint. The results showed that the proposed method
achieved a substantial 74% enhancement in position accuracy
compared to the single IMU. Wang et al. [23] designed four
groups of IMU arrays, each composed of 16 IMUs. They
precisely calibrated and compensated for the errors of each
IMU, including dynamic errors, such as installation angle
and cross-axis coupling error, resulting in a 70% reduction
in positioning error.

The above studies on navigation performance are based on
rigid IMU arrays, and there are also researches focused on
nonrigid IMU arrays. Skog et al. [24] combined two foot-
mounted zero-velocity-aided INSs; one system on each foot.
The navigation performance was significantly improved com-
pared to using two uncoupled foot-mounted systems. In [10]
and [11], the IMUs were nonrigidly connected but were not
combined to improve navigation performance.

To summarize, the navigation performance of the IMU array
can be significantly improved compared to a single IMU,
and there are a few studies on the navigation performance
of nonrigid IMU arrays.

B. IMU Array Data Fusion Algorithm
IMU-level fusion algorithms directly or indirectly integrate

the IMU measurements, with a simple system structure and
extensive research. Liu et al. [25] filtered and denoised
measurements from eight IMUs and conducted distributed
temperature compensation to offer a reliable data source for
the backend solution, thereby enhancing navigation perfor-
mance. Skog et al. [26] employed the mean and median values
to fuse measurements from 14 IMUs installed on the feet.
Both methods markedly decreased the final position error, with
the median method mitigating the impact of some outliers.
Skog et al. [27] proposed a maximum likelihood estimation
method to integrate IMU array measurements, transform-
ing the fusion process into a parameter estimation problem.
Waegli et al. [19] proposed a method that does not directly
fuse IMU measurements but adjusts the INS mechaniza-
tion algorithm to adapt to multiple IMUs. Results indicated
improved navigation performance compared to direct IMU
fusion, as the systematic errors of each IMU are separately
estimated. Wang et al. [28] proposed a weighted fusion method
for IMU arrays, which takes into account the performance
differences of individual chips and adopts a targeted scheme
to allocate weights. The experiments proved that this scheme
is significantly superior to the average fusion method.

INS-level fusion algorithms integrate the navigation solu-
tions from IMUs, resulting in a more complex system
structure. Bancroft [21] employed a centralized filter to
integrate navigation solutions from multiple IMUs, reduc-
ing the position drift through relative position constraints.

Skog et al. [24] designed a state-constrained KF, which
employs the distance upper bound constraint to associate IMUs
distributed on two feet. Wägli [29] proposed a geometric
constraint fusion algorithm, computing the navigation solution
for each IMU, periodically comparing these solutions, and
enabling the estimation of systematic errors for all IMUs.
Skog et al. [26] fused navigation solutions from 14 IMUs
using the mean value, significantly improving navigation per-
formance. Besides, they compared the navigation performance
of IMU-level and INS-level fusion and found a negligible
difference between these two methods. However, they only
conducted experiments on short trajectories and rigid arrays.

The literature survey above indicates numerous studies on
the navigation performance of rigid IMU arrays, and it has
been shown that there is a significant improvement compared
to a single IMU. However, there are a few studies on the
navigation performance of nonrigid (i.e., flexible installed)
IMU arrays. Regarding the data fusion algorithm perspective,
the IMU-level fusion necessitates a certain transformation
relationship between the measurements of different IMUs.
This requirement is not applicable to the nonrigid arrays,
leading to poor robustness and even degraded navigation
performance of the IMU array. The INS-level fusion, while
relatively robust in dealing with the uncertain transformation
relationships between IMU measurements, faces the challenge
of high computational complexity.

III. METHODOLOGY

This section first introduces the framework of the pro-
posed eNav-Fusion and then introduces the INS mechanization
algorithm and the INS/GNSS integrated navigation algorithm.
On this basis, the proposed eNav-Fusion is elaborated, fol-
lowed by a theoretical analysis of its navigation performance
and computational complexity.

A. System Overview
The system overview of the proposed eNav-Fusion is

depicted in the abstract. In the proposed eNav-Fusion, each
IMU in the IMU array independently performs INS mecha-
nization. Subsequently, data fusion of the inertial navigation
solutions and IMU measurements is executed. Then, the fused
inertial navigation solution and measurement are utilized for
state prediction, thus making all IMUs share the same state
covariance. Subsequently, each IMU is individually updated
using the same GNSS position measurement, ensuring the
estimation of systematic errors for each IMU. When the GNSS
measurement is available, the navigation states of all IMUs
with error feedback and correction are fused, and the fused
result serves as the navigation solution of the IMU array;
otherwise, when the GNSS measurement is not available, the
INS solutions of all IMUs are fused and serve as the IMU
array’s solution.

B. Proposed eNav-Fusion
1) INS Mechanization Algorithm: The IMU frame (b frame)

is defined as the IMU body frame, i.e., the front-right-down
frame. The attitude (represented by qn

b or Cn
b), velocity (rep-

resented by vn
eb), and position are derived in the navigation
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frame (n frame, the north-east-down frame). The kinematic
model in the n frame can be written as

q̇n
b =

1
2

qn
b ⊗

[
0

ωb
nb

]
v̇n

eb = Cn
b f b

−
(
2ωn

ie + ωn
en

)
× vn

eb + gn

ϕ̇ =
vN

RM + h
, λ̇ =

vE

(RN + h) cos ϕ
, ḣ = −vD (1)

where ⊗ represents the quaternion product, (·)× represents the
antisymmetric matrix, e frame is the Earth frame, ϕ, λ, and h
are the latitude, longitude, and ellipsoid height, respectively,
ωb

nb is the projection vector of the angular velocity of the
b frame with respect to the n frame in the b frame, f b is
the specific force measured by the accelerometer, gn is the
local gravity, RM and RN represent the meridian curvature
radius and the curvature radius of the ellipse, respectively,
and vN , vE , and vD represent the northward, eastward, and
vertical velocity, respectively. The INS mechanization can be
formulated by adopting the kinematic model in (1) to obtain
high-frequency inertial navigation solutions.

2) INS/GNSS Integrated Navigation Algorithm: The INS and
GNSS are loosely coupled, and KF is used for integrated
navigation. When designing the KF, the system state vector
includes the navigation state error and the IMU error, which
is expressed as

δx =
[
δrn, δvn, φ, bg, ba, sg, sa

]
(2)

where δrn, δvn , and φ are the inertial navigation position error,
velocity error, and attitude error, respectively; bg and ba are
the gyroscope and accelerometer bias errors, respectively; sg
and sa are the gyroscope and accelerometer scale factor errors,
respectively. The bias and scale factors are modeled as the
first-order Gauss–Markov processes [30].

The discrete-time system equation is

δxk = 8k/k−1δxk−1 + wk−1 (3)

where the subscript of δx is the corresponding moment;
8k/k−1 is the state transition matrix from tk−1 to tk ; the
specific expression is shown in [30]; wk−1 is the system noise.

In the prediction stage, according to the state transition
matrix, the system state and its covariance are updated

δ x̂k/k−1 = 8k/k−1δ x̂k−1 (4)

Pk/k−1 = 8k/k−1Pk−18
T
k/k−1 + Qk−1 (5)

where the hat above δx represents the estimate value; δ x̂k/k−1
and Pk/k−1 are the predicted value of the system state and
its covariance at tk , respectively; δ x̂k−1 and Pk−1 are the
optimal estimates of the system state and its covariance at
tk−1, respectively; Qk−1 is the covariance matrix of the system
noise. Please note that, after the KF measurement update, the
error state δx will be fed back and then reset to zero. As a
result, the state vector remains zero all the time during the
prediction. Therefore, the state prediction in formula (4) has
no need to be performed in practice; only the state covariance
prediction in formula (5) needs to be executed.

In the measurement update, the GNSS position measure-
ment is the position of the antenna phase center, so the KF

observation vector is computed by subtracting the GNSS posi-
tion measurement from the GNSS antenna position calculated
by INS. The observation equation can be written as

δzk = Hkδxk + nk (6)

Hk =

[
I3 03

(
Cnk

bk
l
)

× 03 03 03 03

]
(7)

where δzk is the observation vector, Hk is the design matrix,
and nk is the error of GNSS position measurement, which
is modeled as a Gaussian white noise sequence [30], that is,
nk ∼ N (0, Rk), Rk = E[nk nT

k ]; l is the lever arm of the
GNSS antenna. Therefore, the GNSS position measurement
update can be expressed as

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(8)

δ x̂k = δ x̂k/k−1 + Kk
(
δzk − Hkδ x̂k/k−1

)
(9)

Pk = (I − KkHk) Pk/k−1 (I − KkHk)
T

+ KkRkKT
k (10)

where Kk is the Kalman gain. Since the error state δ x̂k/k−1
remains zero before the measurement update, formula (9) can
be simplified as

δ x̂k = Kkδzk . (11)

Finally, δ x̂k is fed back to the navigation state and IMU
error. The corrected navigation state is the system’s output,
and the corrected IMU error will compensate for IMU mea-
surements of the next epoch.

3) Proposed Data Fusion Algorithm: When integrating dif-
ferent IMUs in the IMU array with GNSS, numerous identical
operation steps and similar operation results can be shared
to reduce considerable computational complexity without sig-
nificantly impacting navigation performance. Consequently,
we conducted an analysis of the simplified operation steps and
results and designed the corresponding improved algorithm.

During covariance propagation, according to (5), the update
of Pk/k−1 is determined by the state transition matrix 8k/k−1
and the noise Qk−1 involved in the propagation process.
As demonstrated in [30], 8k/k−1 depends on the navigation
state and IMU measurement, while Qk−1 is associated with the
navigation state and noise performance of the IMU. For the
IMU array, the measurement (after correction) and navigation
state of each IMU are similar enough, and 8k/k−1 and Qk−1
during state propagation are essentially identical. Hence, the
IMUs within the IMU array can share a common Pk/k−1: the
shared Pk/k−1 is updated using the fused IMU measurement
and navigation state. Similarly, when computing the GNSS
position design matrix Hk , the lever arm and navigation state
for different IMUs are also close. The fused lever arm and
navigation state can be employed to compute Hk , which can
then serve as the design matrix shared by all IMUs, enabling
all IMUs to share the same Kalman gain Kk . The specific
procedure of the proposed eNav-Fusion is detailed as follows,
as presented in Fig. 2.

First, INS mechanization is performed independently for
each IMU in the array. Then, the inertial navigation solutions
are fused by projecting them onto the IMU array frame
and averaging the projected solutions. IMU measurements
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Fig. 2. Flowchart of the proposed eNav-Fusion.

are also fused in the same way. The fused inertial navi-
gation solutions and IMU measurements are then employed
for covariance propagation. That is, when updating Pk/k−1
through formula (5), the fused inertial navigation solutions and
IMU measurements are used to compute 8k/k−1 and Qk−1.
The obtained Pk/k−1 serves the state covariance shared by all
IMUs. During the measurement update, the fused navigation
state and the lever arm of the GNSS antenna to the IMU array
frame are utilized to compute Hk , which serves as a common
design matrix shared by all IMUs. According to formula (8),
with the same Pk/k−1, Hk , and Rk , every IMU shares the
same Kalman gain Kk . Similarly, they share the same Pk in
formula (10). However, the observation vector of each IMU is
computed, respectively, using their own navigation state and
the GNSS position measurement. Then, δ x̂k in formula (11) is
computed individually and fed back to each IMU’s navigation
solution and systematic error. Finally, the navigation solutions
after correction are again fused to acquire the navigation
solution of the IMU array. The steps of IMU measurements
and navigation states/solutions fusion are as follows.

The fusion of IMU measurements is described first. The
frame of the i th IMU is denoted as bi frame, and the frame
of the IMU array is denoted as bc frame. The corresponding
axes of each IMU and the IMU array frame are parallel. First,
the measurements of each IMU are projected onto bc frame

ω
bc
i = Cbc

bi
ωbi (12)

f bc
i = f bi − ωbi ×

(
ωbi × lbi

)
− ω̇bi × lbi (13)

where ωbi and ω̇bi are the angular velocity and angular accel-
eration of the i th IMU, respectively. Then, the measurements
ωbc and f bc of the IMU array are obtained by averaging

ωbc =
1
N

6ω
bc
i , f bc =

1
N

6 f bc
i . (14)

Then, the fusion of navigation states/solutions is presented.
The navigation states of the i th IMU are represented by the
geodetic coordinate rn

i , velocity vn
i , and attitude Cn

bi
. First, the

navigation states are projected onto bc frame

rn
c,i = rn

i + D−1
R,i C

n
bi

lbi (15)

vn
c,i = vn

i + Cn
bi

(
ω

bi
ebi

× lbi
)

(16)

Cn
bc,i = Cn

bi
Cbi

bc
(17)

where D−1
R,i is employed to transform the northward, eastward,

and vertical position differences in the n frame into latitude,

longitude, and elevation differences. Before fusion, Cn
bc,i is

converted to Euler angle αnbc,i . Finally, the navigation states
of the IMU array are derived by averaging rn

c,i , v
n
c,i , and αnbc,i ,

denoted as rn
c , vn

c , and αnbc .

C. Theoretical Performance Analysis of eNav-Fusion
1) Navigation Performance: The primary distinction

between the proposed eNav-Fusion and the classic navigation
solution level fusion algorithm (Nav-Fusion, refer to
Section IV-B for details) is that each IMU shares the same
state covariance Pk/k−1 and Kalman gain Kk . Based on the
previous analysis, Pk/k−1 is associated with the measurement
and navigation state of the IMU. Generally, in the rigid IMU
array, the measurement and navigation state of each IMU
are similar; hence, Pk/k−1 of different IMUs is similar. Kk
depends on Pk/k−1 and the reliability of GNSS observation,
represented by Rk . All IMUs employ the same GNSS
observation; hence, Rk remains the same for different IMUs.
Therefore, Kk of different IMUs is similar. Consequently,
sharing a common state covariance and Kalman gain for all
IMUs in the proposed eNav-Fusion will not significantly
impact the navigation performance compared to Nav-Fusion.

When IMUs are nonrigidly connected, there are some
differences in the measurements and navigation states among
different IMUs, leading to differences in Pk/k−1. However,
due to the same overall motion of IMUs, the differences in
Pk/k−1 will not consistently increase. Taking six nonrigidly
connected IMUs with a maximum lever arm of about 46 cm
as an example, the INS/GNSS integrated navigation algorithm
was implemented individually for each IMU. The position
error standard deviation, defined as the square root of the first
three diagonal elements of Pk/k−1, for the six IMUs at the
time interval 51–53 s, is illustrated in Fig. 3. Among them,
the most noticeable difference lies in the standard deviation
of eastward errors. Specifically, all six IMUs had the same
initial value. After 1 s of propagation, IMUs 1 and 5 exhibited
errors around 0.193 m, whereas other IMUs ranged between
0.155 and 0.17 m, with a maximum gap of approximately
0.038 m. However, after the update of GNSS measurement,
the standard deviation of the six IMUs was significantly
reduced, ranging between 0.018 and 0.021 m, with the max-
imum gap not exceeding 0.003 m. The experimental results
indicated that the variations in Pk/k−1 of different IMUs are
similar, and the differences are maintained within a small
range. Therefore, despite the nonrigid connection of IMUs,
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TABLE I
FLOATING-POINT OPERATION COUNT OF EACH STEP

the navigation performance of the proposed eNav-Fusion will
not be significantly diminished compared to Nav-Fusion.

2) Computational Complexity: The INS/GNSS integrated
navigation algorithm mainly consists of INS mechanization,
state prediction, and measurement update. The frequency of
mechanization and prediction depends on the data rate of
IMU, while the update frequency corresponds to the data rate
of GNSS. Generally, the data rate of IMU (e.g., 200 Hz)
is much higher than that of GNSS (e.g., 1 Hz). The INS
mechanization only involves low-dimensional matrix opera-
tions, while the prediction involves multiple high-dimensional
matrix operations. Therefore, the computational complexity
of the integrated navigation algorithm primarily depends on
the prediction. In the proposed eNav-Fusion, different IMUs
share the prediction process, resulting in significant savings in
computational complexity. A detailed quantitative analysis is
conducted as follows.

The number of floating-point operations is used to gauge the
computational complexity. Floating-point operations include
addition (including subtraction) and multiplication (includ-
ing division). Modern navigation computer CPUs generally
include a hardware multiplier, making the time spent on
different floating-point operations comparable. Consequently,
no distinction is made when evaluating the computational
complexity.

First, the floating-point operation count of each component
in the integrated navigation algorithm is analyzed, as shown
in Table I. As mentioned in Section III-B, after the measure-
ment update, the error state will be fed back and then reset
to zero, mitigating any additional computational complexity
arising from the error state prediction in formula (4). The
KF prediction consumes the most floating-point operations,
followed by the measurement update, and finally, the INS
mechanization.

TABLE II
COUNT OF EXECUTIONS PER STEP WITHIN 1 S FOR DIFFERENT

ALGORITHMS

Assuming IMU and GNSS data rates are 200 and 1 Hz,
respectively, and the number of IMUs is denoted by N ,
the count of executions per step within 1 s for INS/GNSS
integrated navigation algorithm of a single IMU, Nav-Fusion,
and eNav-Fusion is analyzed, as listed in Table II. Nav-
Fusion repeats each step of INS/GNSS integrated navigation
algorithm of a single IMU N times and increases the compu-
tational complexity of fusing navigation solutions. Therefore,
its computational complexity exceeds N times that of the
single IMU algorithm. For the proposed eNav-Fusion, the
count of high-dimensional matrix operations is independent
of the number of IMUs in the array, significantly improving
computational efficiency. Besides, the proposed eNav-Fusion
introduces additional computational complexity to data fusion
beyond the single IMU algorithm. Specifically, the prediction
process fuses the navigation solutions and IMU measurements
of the previous moment (200 Hz), and the update process fuses
the uncorrected navigation solutions of the current moment
(1 Hz). The output process fuses the navigation solutions of
the current moment (200 Hz).

The floating-point operation counts for INS mechanization,
prediction, and update are denoted as NInsMech, NPredict, and
NUpdate, respectively; the sum of the floating-point operation
counts for calculating δzk and δ x̂k and performing feedback
is denoted as NUpdateEach; the floating-point operation counts
for fusing the IMU measurement and navigation solution
of each IMU are denoted as NIMU and NNav, respectively.
According to Table II, the floating-point operation count of
the integrated navigation algorithm for a single IMU in 1 s
is given by 200(NInsMech + NPredict) + NUpdate, while the
floating-point operation count of the proposed eNav-Fusion is
given by 200[(N (NInsMech +2NNavState + NIMU)+ NPredict)]+

NUpdate + (N − 1)NUpdateEach + N ∗ NNavState. Substituting
the values in Table I, the floating-point operation count of
the integrated navigation algorithm for a single IMU in 1 s
is 20 824 712, while the floating-point operation count of the
proposed eNav-Fusion is 20761810+209442∗N . The increase
in floating-point operation count introduced by the proposed
eNav-Fusion for each additional IMU is only 1.01% of the
floating-point operation count of the single IMU algorithm. For
N equal to 6, 16, and 100, the floating-point operation count of
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Fig. 3. Standard deviation of IMU position in array. (a) North. (b) East. (c) Vertical.

the proposed eNav-Fusion is 1.06×, 1.16×, and 2.00× that of
the single IMU algorithm. Thus, the computational complexity
of the proposed eNav-Fusion exhibits no significant increase
compared to the single IMU algorithm, making a significant
improvement over the current Nav-Fusion algorithm.

IV. EXPERIMENTS AND RESULTS

To accurately evaluate the performance of the proposed
eNav-Fusion, we designed four groups of rigid arrays, each
consisting of 16 rigidly connected IMUs, along with one
flexible array comprising six nonrigidly connected IMUs.
Sufficient tests were conducted on both vehicles and wheeled
robots. This section first verified the navigation performance
of the proposed eNav-Fusion through comparative analysis.
Then, the optimization design of the proposed eNav-Fusion
was tested and analyzed. Finally, we conducted a discussion
on the navigation performance and computational complexity
of the proposed eNav-Fusion.

A. Experimental Description
1) Rigid IMU Array: We utilized the experimental equip-

ment and data from our previous work [23] to verify the
performance of the proposed data fusion algorithm. In [23],
we used 16 pieces of MEMS IMU ICM20602 to form an
IMU array, which was welded on a PCB board, ensuring
rigid installation. To guarantee accurate testing of the IMU
array’s performance, we built four sets of such IMU arrays.
A photograph of the rigid IMU arrays is shown in Fig. 4. The
vehicle experiment was conducted under open-sky conditions
to obtain high-precision reference results. Please note that,
in the data processing of this article, we intentionally used
raw IMU measurements without turntable calibration, so as to
keep the proposed solution feasible and cost down.

2) Nonrigid IMU Array: The nonrigid array comprised six
pieces of ICM20602 modules, mounted on three flexible steel
rulers, as illustrated in Fig. 5. This nonrigid array was mounted
on a wheeled robot with a maximum speed of 1.5 m/s.
The integrated navigation solution of a navigation-grade IMU
Leador-A15 and the high-precision GNSS positioning result
obtained by postprocessed kinematic (PPK) served as the
reference truth. The position accuracy is 0.02 m, and the
attitude accuracy is 0.01◦.

The nonrigid array experiment was conducted on an open
playground, and the test trajectory is illustrated in Fig. 6,
with the green and red trajectories representing tests A and

Fig. 4. Photograph of the rigid IMU arrays.

Fig. 5. Installation of the nonrigid IMU array (top view, IMUs hold by
steel rulers).

B, respectively. Test A was conducted on the uneven and
bumpy lawn at the center of the playground, resulting in
significant vibrations as the robot drove on the lawn. This
led to diverse motion perceptions among different IMUs,
indicating a nonrigid installation. Test B was carried out on
the playground runway, with six books of varying thicknesses
placed to mimic the ground obstacles in real-world scenarios.
As depicted in Fig. 7, the robot encountered the books during
its movement, causing it to generate noticeable vibrations,
which resulted in a substantial angular velocity along the
x-axis of the gyroscope and a significant acceleration along
the y- and z-axes of the accelerometer.

B. Data Processing
We employed INS/GNSS integrated navigation algorithm

for a single IMU to compute the positioning results of
each IMU. Additionally, we utilized the classic IMU array
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Fig. 6. Trajectory of nonrigid array tests.

Fig. 7. Robot passed through the ground obstacle in test B.

IMU-level fusion algorithm (IMU-Fusion), navigation solu-
tion level fusion algorithm (Nav-Fusion), and the proposed
eNav-Fusion to compute the positioning results of IMU arrays.
IMU-Fusion and Nav-Fusion fuse IMU measurements or
navigation solutions by averaging, as demonstrated in [26].
During the initialization stage of INS, the gyroscope measure-
ments obtained when the vehicle/robot was stationary were
performed as the initial bias of the gyroscope, so that the
navigation state converged quickly.

To evaluate the navigation performance of the IMU array,
GNSS outage occurred after the vehicle or robot moved for a
while. In the rigid array experiment and nonrigid array test A,
the outage length and interval were 30 and 90 s, respectively.
In nonrigid array test B, GNSS outages were manually set
without periodicity, with each outage lasting for 30 s. The
commencement of each outage coincided with the moment
the front wheel of the robot rolled over the book for the first
time during each round trip, which aimed to comprehensively
demonstrate the navigation performance of the nonrigid array
during structural motion deformation.

Next, the positioning results of the IMU array solved by
IMU-Fusion, Nav-Fusion, and the proposed eNav-Fusion were
compared with the reference truth, yielding positioning error
sequences for the IMU array. The maximum position drift
error during all GNSS outage periods was then extracted, and
the rms value of the maximum position drift errors across
all outages was calculated, serving as the positioning error

Fig. 8. Position error of IMU array (Group1 as example).

of the IMU array [31]. This approach was also employed
to assess the positioning error of each IMU, with the rms
value of the positioning errors for all IMUs serving as the
positioning error of a single IMU. It is worth mentioning that
the MEMS IMU, ICM20602 produced low-frequency noise
in the z-axis measurement of the accelerometer in a static
state, which affects the performance along the IMU array’s z-
axis [23]. Therefore, we exclusively evaluated the horizontal
positioning error. After fusion, the random error of each axis is
theoretically reduced by (N )1/2 times, where N is the number
of IMUs. Therefore, the theoretical reduction factor for the
horizontal positioning error should also be (N )1/2 times.

Finally, the positioning errors of the IMU array and a single
IMU were compared to evaluate the navigation performance
of the proposed eNav-Fusion. The evaluation was conducted
in comparison with IMU-Fusion and Nav-Fusion.

C. Results of Rigid Array Experiment
1) Navigation Performance: The positioning errors of the

four rigid arrays were computed using the data processing
method mentioned above. The error drift curve of Group1
solved by the proposed eNav-Fusion is illustrated in Fig. 8,
with a total of 29 GNSS outage test samples, ensuring the
accuracy and persuasiveness of the evaluation. The horizontal
position errors of a single IMU and the arrays are presented in
Table III. The ratio of the horizontal error of a single IMU to
the horizontal error of the IMU array was calculated, serving
as the improvement effect on the navigation performance of
the IMU array.

Due to the differences in the individual IMUs and the
random errors during testing, including GNSS positioning
errors and differences in vehicle dynamics, there were differ-
ences in the improvement effects among different IMU arrays.
For instance, when using Nav-Fusion, Group1’s navigation
performance was improved by 2.88× (rms), while the worst
improvement effect of Group3 was only 2.11× (rms).

Despite variations in results among different IMU array
tests due to random errors, the three algorithms reduced the
horizontal position error of the IMU array by 2.53×, 2.47×,
and 2.51× (rms) compared to a single IMU, achieving 63.3%,
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TABLE III
30-S GNSS OUTAGE HORIZONTAL POSITION ERROR OF FOUR RIGID IMU ARRAYS

61.8%, and 62.8% of the theoretical value (i.e., four times),
respectively. The results indicated no significant difference
in terms of the navigation performance among the three
algorithms. It is clear that for a rigid array, both fusing IMU
measurements and fusing navigation solutions can effectively
reduce random errors, and their ability to reduce random errors
is essentially equivalent. Besides, the simplification of com-
putational complexity designed by the proposed eNav-Fusion
has no significant impact on the navigation performance for
the rigid IMU arrays.

We also observed a certain gap between the navigation
performance improvement effect of the three algorithms and
the theoretical factor of 4. The reasons primarily stem from
two factors. One is that errors such as cross-axis coupling
of MEMS IMU are not compensated, and the other is the
common-mode circuit noise, both of which result in the mea-
surement errors of IMUs not being completely independent.

2) Computational Efficiency: The three data fusion algo-
rithms were implemented on the desktop PC (AMD R7-
3700X, Ubuntu 20.04.6 LTS) and employed to solve the four
arrays. The duration of each array’s data was 1000 s. The
running time for each algorithm was recorded. To reduce
randomness, each computation was repeated three times, and
the rms values of the three computation times are presented
in Table IV.

According to Table IV, the running time of IMU-Fusion
was essentially identical to that of the INS/GNSS integrated
navigation algorithm for a single IMU, as it only increased
the computational complexity of fusing IMU measurements,
which can be ignored. The running time of Nav-Fusion was
16.08× that of the algorithm for a single IMU, closely aligning
with the number of IMUs, given that each IMU requires
separate solving for integrated navigation. The proposed
eNav-Fusion exhibited a running time of only 1.22× that of
the algorithm for a single IMU, consistent with theoretical
analysis (1.16×). It is noteworthy that the running time is
not only related to the number of floating-point operations but
also affected by various factors, such as space complexity and
memory access times. Therefore, the ratio of the running time
and the ratio of the number of floating-point operations among
different algorithms are not exactly the same.

Processing 1 s of the integrated navigation data, the average
times for the integrated navigation algorithm for a single IMU,
Nav-Fusion, and the proposed eNav-Fusion were 4.67, 75, and
5.71 ms, respectively. Compared with the algorithm for a sin-

gle IMU, the running time of the proposed eNav-Fusion only
increased by 1.04 ms (22.27%). On the other hand, the running
time of the proposed eNav-Fusion was only 7.61% of the Nav-
Fusion. In summary, the proposed eNav-Fusion demonstrates
navigation performance similar to the Nav-Fusion without
imposing a substantial computational load compared to the
integrated navigation algorithm for a single IMU.

D. Results of Nonrigid Array Experiment
1) Navigation Performance: The horizontal positioning

errors of nonrigid array tests A and B are detailed in Table V.
The horizontal errors of a single IMU for the two tests
were 8.05 and 8.41 m, respectively, which were markedly
higher than 4.87 m of the rigid array. This difference was
primarily attributed to severe vibration in these two tests,
which led to continuous changes in the lever arm of the
GNSS antenna, thereby increasing the positioning error. The
deteriorated positioning errors of such single IMU should not
be used as the benchmark to evaluate the improved navigation
performance of the nonrigid IMU array. Therefore, we used
the single IMU positioning error (i.e., 4.87 m) of the rigid
array experiment to calculate the improvement ratio of the
navigation performance.

In test A, the horizontal position errors of the IMU array in
IMU-Fusion degraded compared to that of a single IMU (with
a ratio of 0.61), instead of any improvement. This outcome
could be attributed to the continuous and severe vibration in
test A, resulting in a high degree of nonrigidity. Nav-Fusion
and the proposed eNav-Fusion, which fuse navigation solu-
tions, can still bring significant performance improvements for
the nonrigid IMU array, enhancing the navigation performance
by 1.56× and 1.63×, respectively.

In test B, IMU-Fusion improved the navigation performance
of the IMU array by only 1.16×, still yielding some per-
formance improvements but very limited. This was attributed
to the fact that the evident nonrigid connection between the
IMUs happened only for part of the GNSS outage time,
while for the other part, close to rigid connection, fusing
the IMU measurements effectively reduced the positioning
error. Nevertheless, Nav-Fusion and the proposed eNav-Fusion
exhibited higher navigation performance, reducing horizontal
error by 1.48× and 1.51×, respectively.

Tests A and B proved that for nonrigidly connected IMUs,
due to the failure of the IMU-Fusion to assume rigid installa-
tion between IMUs, the rationality of fusing the raw measure-
ments of IMUs is lost. Consequently, IMU-Fusion is unable
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TABLE IV
RUNNING TIME OF 1000-S RIGID IMU ARRAY DATA

TABLE V
30-S GNSS OUTAGE HORIZONTAL POSITION ERROR OF THE NONRIGID IMU ARRAY

to effectively improve the navigation performance of the IMU
arrays, and there is even a risk of degrading the positioning
accuracy. In contrast, the approach of fusing the navigation
solutions of each IMU, as adopted in Nav-Fusion and the pro-
posed eNav-Fusion, remains effective in significantly reducing
the positioning error and demonstrating superior navigation
performance compared to a single IMU. Besides, there was
no significant difference in the improvement effect on the
navigation performance of these two algorithms, which proved
that for a nonrigid array, the algorithm simplification employed
by the proposed eNav-Fusion has no significant impact on its
navigation performance.

The average improvement of the IMU array navigation
performance for the proposed eNav-Fusion in tests A and B
was 1.57×, which achieved 64.1% of the theoretical value
((6)1/2

≈ 2.45), while the improvement effect in the rigid
array experiment achieved 62.8% of the theoretical value. It is
indicated that the proposed eNav-Fusion exhibits the same
ability to improve navigation performance in both rigid and
nonrigid scenarios, proving its robustness.

2) Computational Efficiency: The algorithms were imple-
mented on the same computer hardware and operating system
as the rigid array experiment. Similarly, for the nonrigid array,
the time required to solve 1000 s data was recorded and the
rms values of the three calculation times are calculated.

The running time of IMU-Fusion was essentially identical
to that of the integrated navigation algorithm for a single
IMU. The running time of Nav-Fusion was 6.05× that of the
integrated navigation algorithm for a single IMU, which was
nearly proportional to the number of IMUs. The running time
of the proposed eNav-Fusion was 1.09× that of the integrated
navigation algorithm for a single IMU, which was consistent
with the theoretical analysis of 1.06×. This result again
proved that the proposed eNav-Fusion significantly improves
computational efficiency compared with Nav-Fusion without
compromising navigation performance.

E. Discussions
The improved robustness (dealing with nonrigid IMU

arrays) of the proposed eNav-Fusion benefits from the fusion
of navigation solutions instead of IMU measurements, while
the improvement in the computational efficiency, compared
with Nav-Fusion, is derived from the simplifications in the
KF prediction and measurement update. In addition, there
is potential for simplification in the INS mechanization of
the navigation solution level fusion. To further validate the
rationality of the proposed eNav-Fusion, we conducted the
following dedicated tests.

1) On Nav-Fusion, simplify the KF prediction and mea-
surement update (i.e., the proposed eNav-Fusion).

2) On the above basis, continue to simplify the INS mech-
anization.

The specific approach to simplify the INS mechanization is
to employ the fused navigation state to calculate the relevant
intermediate variables for each IMU. Consequently, the inter-
mediate variables related to the navigation state only need to
be calculated once instead of N times.

Obviously, for rigid IMU arrays, the navigation states of
different IMUs are similar, and the simplification of INS
mechanization is unlikely to have a significant impact on
navigation performance. However, for nonrigid arrays, the
navigation states of different IMUs are somewhat different,
and it is difficult to judge how much the simplification in
INS mechanization will affect the navigation performance.
Therefore, the data from nonrigid array test A were used
to evaluate the simplified algorithms. The horizontal position
errors of the simplified algorithms are presented in Table VI.

The horizontal error (rms) of the simplification 1)
changed from 3.12 to 2.99 m compared with Nav-Fusion,
demonstrating similar navigation performance, which proved
that the simplification of the KF prediction and measurement
update proposed by eNav-Fusion does not compromise the

Authorized licensed use limited to: Wuhan University. Downloaded on August 19,2024 at 01:08:48 UTC from IEEE Xplore.  Restrictions apply. 



26288 IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

TABLE VI
HORIZONTAL ERROR OF DIFFERENT SIMPLIFIED ALGORITHMS

navigation performance of the IMU array. However, the posi-
tioning error of simplification 2) was significantly larger than
that of the simplification 1). The reason is the significant
differences in some navigation states of the nonrigidly con-
nected IMUs, particularly for velocity and attitude. In the
nonrigid array test, severe vibration resulted in significant
differences in the Y - and Z -axes velocity and the roll angle of
different IMUs. Therefore, the corresponding fused navigation
states should not be feedback to the INS mechanization of
each IMU; otherwise, it would lead to serious accuracy loss.
The above results indicate that the computational complexity
simplification designed by the proposed eNav-Fusion has no
significant impact on navigation performance, and there is
limited space for further improvement.

The above experimental results and discussions show that
compared with a single IMU, the proposed eNav-Fusion can
yield significant navigation performance improvement without
substantially increasing computational complexity. Compared
with Nav-Fusion, the proposed eNav-Fusion exhibits the
lowest computational complexity while maintaining the nav-
igation performance of the IMU array. Additionally, under
nonrigid IMU installation conditions where IMU-Fusion is
not applicable, the proposed eNav-Fusion still improves the
navigation performance as expected. Therefore, the proposed
eNav-Fusion exhibits compatibility with navigation perfor-
mance robustness and computational efficiency.

V. CONCLUSION

This article proposes a navigation solution level data fusion
algorithm (eNav-Fusion) for the IMU array that is inte-
grated with GNSS, applicable to both rigidly and nonrigidly
installed IMU arrays and computation saving. The proposed
eNav-Fusion uses the fused navigation state to calculate inter-
mediate variables in the KF prediction and update processes
to save most of the computational complexity without degrad-
ing the navigation performance. We conduct comprehensive
real-world experiments based on both rigid 16-IMU array and
nonrigid 6-IMU array. The results indicate that for rigid and
nonrigid IMU arrays, the improvement factor of navigation
performance achieved 62.8% and 64.1% of the theoretical
value, respectively. Regarding the computational efficiency,
the processing time of eNav-Fusion for the 6-IMU array and
16-IMU array is only 1.09× and 1.22× of the integrated
navigation algorithm for a single IMU, respectively.

The proposed eNav-Fusion algorithm was evaluated on
consumer-grade IMU arrays in this article. Future work will try
the algorithm for higher grade IMU arrays and with different
extents of nonrigid installations.
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