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PO-KF: A Pose-Only Representation-based Kalman
Filter for Visual Inertial Odometry

Ligiang Wang, Hailiang Tang, Tisheng Zhang, Yan Wang, Quan Zhang, and Xiaoji Niu

Abstract—Visual-inertial state estimation is widely employed in
the Internet of Things, with filter-based visual-inertial odometry
(VIO) being a popular algorithm due to its balance between
computational efficiency and localization accuracy. However,
the localization performance of the commonly used multi-state
constraint Kalman filter (MSCKF)-based VIO is suffering from
linearization errors in feature three-dimensional (3D) positions
and delayed measurement updates. Targeting more accurate and
robust localization, we incorporate the pose-only representation
into the filter-based VIO and propose a pose-only representation-
based Kalman filter (PO-KF) in this paper. Leveraging the
decoupling of camera poses and feature positions in the pose-only
representation, the proposed PO-KF explicitly eliminates feature
3D coordinates from its measurement equation. As a result, the
linearization errors caused by feature positions can be removed
efficiently, while immediate updates of visual measurements can
be conducted. We also introduce an information matrix-derived
base-frame selection algorithm to identify the most suitable
base-frames for each feature. Extensive experiments on multiple
datasets demonstrate that PO-KF outperforms state-of-the-art
VIO systems. Notably, PO-KF achieves nearly a 50% reduction
in relative pose errors compared to MSCKF-based VIO. Further
experiments demonstrate that PO-KF also exhibits superior
robustness while maintaining real-time performance comparable
to MSCKF-based VIO.

Index Terms—Visual-inertial odometry(VIO), pose-only repre-
sentation, state estimation, Kalman filter.

I. INTRODUCTION

EAL-TIME, accurate, and robust localization is the

fundamental requirement for the real-world Internet of
Things (IoT) systems, such as autonomous vehicles, drones,
and mobile augmented Reality (AR) / virtual Reality (VR)
devices [1], [2]. Among various localization methods, visual-
inertial odometry (VIO), which combines a monocular camera
and a consumer-grade inertial measurement unit (IMU), has
been extensively employed due to its advantage of low cost,
high precision, and small size [3]. To date, feature points-
based, visual-inertial tight-coupled VIO has been recognized
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for its stronger robustness and higher accuracy. For the state
estimation in the aforementioned VIO, there are two predomi-
nant algorithms: optimization-based solutions and filter-based
solutions [4]. Optimization-based solutions, known for iterated
relinearization, generally achieve more accurate state estima-
tion but at a higher computational cost. In contrast, filter-based
solutions leverage an efficient Kalman filter update, consuming
less computation power. Unlike the Extended Kalman Filter
(EKF), which augments both feature positions and camera
poses into the state vector, the Multi-State Constraint Kalman
Filter (MSCKF) [5] augments only camera poses. Conse-
quently, MSCKEF significantly reduces the dimension of the
state vector and computational complexity, making it the
most representative filter-based solution. With the significant
advantages of low computational cost, filter-based solutions
are popular in IoT platforms.

To construct the measurement equation in MSCKEF, the
three-dimensional (3D) feature positions are first triangulated
and then projected onto the image planes. Since the 3D feature
positions are absent in the state vector, MSCKF performs
nullspace projection to eliminate these positions from its mea-
surement equation [5], [6]. However, in this way, the update
and relinearization of feature positions are prevented [4] in
MSCKEF. Therefore, to achieve the most accurate 3D position,
a feature will be triangulated until it reaches its maximum
tracking length or experiences tracking failure, known as
delayed feature initialization [6], [7] in MSCKF. Although
delayed feature initialization helps minimize the linearization
errors on feature 3D positions, it also postpones the use of
visual measurements and the correction of the state vector
until the feature is triangulated. These delays in MSCKF may
lead to large accumulative errors in the system state, which
can be particularly challenging for consumer-grade IMU in
IoT applications. Moreover, the linearization errors on the
feature 3D positions remain in the measurement equation and
nullspace projection process. Equally importantly, once the
feature triangulation fails, the measurement equation cannot be
constructed, rendering most short-tracking features ineffective
in the system state.

The pose-only imaging representation [8], equivalent to
the two-view visual geometry, decouples camera poses from
3D feature positions. This decoupling facilitates the formula-
tion of cost functions only tied to the camera poses in the
optimization problem, leading to an analytical solution for
the spatial feature coordinates reconstruction [9]. Recognizing
this advantage, we are inspired to integrate the pose-only
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representation into the measurement equations of filter-based
VIO and explicitly eliminate feature 3D positions. In this way,
the reprojection measurement equation becomes only related
to the cloned poses and no longer rely on successful feature
triangulation. Consequently, the linearization errors caused
by the feature positions are removed from the measurement
equation. As feature triangulation is indispensable for the mea-
surement equation, the delayed measurement update becomes
unnecessary, replaced by an immediate update when enough
poses are available to represent the feature.

Based on the above motivations, we propose PO-KF, a
pose-only representation-based Kalman filter for visual-inertial
odometry. To construct a pose-only measurement model with
optimal pose constraints, we also propose an information
matrix-derived base-frame selection algorithm. Additionally,
we introduce the specialized-designed strategy during zero-
velocity states for PO-KF to enhance its localization robust-
ness. Leveraging these methods, PO-KF has the potential to
tackle the aforementioned concerns of MSCKF and produce a
smooth and robust localization trajectory. The main contribu-
tions of this paper are highlighted as follows:

« We propose a pose-only representation-based Kalman
filter for visual-inertial odometry. The features’ positions,
represented by poses of the base-frames, are employed
in the construction of measurement equations for PO-
KF, explicitly eliminating the feature 3D positions from
the measurement equation and immediately updating the
system state using visual measurements.

o« We propose a base-frame selection algorithm for the
pose-only representation. By constructing an information
matrix that incorporates the depth constraint of the feature
using the base-frames and current frame, we consider the
determinant value of the matrix as an indicator to identify
the most suitable base-frames.

o We thoroughly evaluate the localization performance of
PO-KF using publicly available and privately obtained
datasets. Compared to MSCKF-based VIO, PO-KF re-
duces the 100m relative rotation and position error by
52% and 38% respectively, while demonstrating superior
localization robustness and similar real-time performance.

The remaining sections of this paper are organized as
follows. Section II provides a summary of related works.
Section IIT presents the preliminary knowledge of MSCKEF-
based VIO. In Section IV, we introduce the overview of
our proposed PO-KF. Following that, Section V details the
pose-only measurement model, and Section VI introduces our
base-frame selection algorithm. Section VII is dedicated to
the comprehensive evaluation and analysis of the localization
performance of PO-KF. Finally, Section VIII concludes the
paper and outlines future works.

II. RELATED WORKS

VIO is a classical topic for estimating precise six degrees of
freedom pose by integrating visual and inertial measurements.
Considerable algorithms for VIO have emerged in the past two
decased [3], [4] and our focus centers on the feature-based
tight-coupled VIO system. In this section, we briefly review
the VIO systems and feature representations for VIO.

A. Visual-Inertial Odometry Systems

The classification of the feature-based tight-coupled VIO
systems revolves around state estimation methods, distinguish-
ing them into optimization-based and filter-based solutions
[4]. By leveraging iterated relinearization, the batch nonlin-
ear optimization method proves highly applicability for the
nonlinear state estimation of VIO. Thanks to the rapid devel-
opment of high-performance computing, optimization-based
VIO has successfully achieved real-time solutions and gained
widespread popularity in related research. The representative
optimization-based VIO, such as OKVIS [10] and IC-GVINS
[11], fuse a series of past camera poses and current inertial
states by a keyframe-based sliding window optimization ap-
proach, aiming at accurate trajectory estimation. Besides, some
optimization-based solutions, like VINS-Mono [12] and ORB-
SLAM3 [13], also extend advanced capabilities based on VIO,
including online relocalization and global pose optimization.
For stable localization accuracy in dynamic environments,
DGM-VINS [14], DynaVINS [15], and SRVIO [16] achieve
precise feature detection and robust loop closure by leveraging
multiple geometric constraints or nerual networks.

Different from the optimization-based VIO, filter-based so-
lutions linearize the system state once in its state propagation
and update, respectively, leading to a more efficient VIO [17].
An earlier study [18] implemented VIO using an EKF, which
expanded the state vector with feature depths and simultane-
ously estimated camera poses and feature depths. However,
augmenting the feature depth dramatically increases the di-
mension of the state vector and compromises the efficiency
advantages of a filter. To address this, Mourikis et al. proposed
MSCKEF [5], which only cloned camera poses [19] into the
state vector and effectively constrained the state dimension.
In this way, MSCKF maintains the low computational cost of
filter-based VIO and achieves equivalent localization accuracy,
becoming the most representative filter-based VIO algorithm.
With a balance of real-time performance and localization
accuracy, MSCKEF has expanded its applications in drones [20]
and wheeled carriers [21], [22].

Despite its superior efficiency, the localization accuracy
of MSCKEF is still impacted by the limitations of once lin-
earization of the filter. To mitigate the linearization error in
the measurement equations, the iterated EKF was introduced
into MSCKF [23]. Although the iterated MSCKF achieves
improved accuracy, it also complicates the measurement up-
date process. Delayed feature initialization [6], [7] in MSCKF
minimizes linearization errors on feature positions, but the
one-time triangulation limits the accuracy of feature 3D posi-
tions. To address this limitation, hybrid MSCKF/SLAM VIO
[24], [25] augments and estimates the 3D positions of long-
tracking features, thereby enhancing the localization accuracy
by the reduced feature 3D position errors and the prolonged
tracking measurements. However, the hybrid system suffers
from a complex system structure and increased computation
cost. Moreover, the delayed updates of visual measurements
caused by delayed feature initialization in these systems are
neglected, which also affects the localization performance.

Several recent studies have aimed to enhance the robust-
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ness of MSCKEF, focusing on online calibration, observability
consistency, and numerical stability. The online camera-IMU
extrinsic calibration [26] and time offset calibration [27]
ensure the normal operation of MSCKF in devices with-
out precise hardware parameters. Various observability-based
methodologies [28]-[30] are also employed in MSCKF to
ensure correct observability properties. In terms of numerical
stability, SR-ASWF [31] introduces a square-root inverse
version of MSCKF and enables it to run on platforms with
limited resources. Additionally, the state divergence caused by
limited parallax during zero-velocity states is also a concern
in VIO [32]. Odometry and non-holonomic constraints [33]
[34] are effective auxiliary information for VIO during the
stationary periods [21], [35], but only be applicable in wheeled
carriers. Based on accurate zero-velocity detection, the zero-
velocity update(ZUPT) is a common method for VIO across
various devices [36]. However, as a virtual measurement,
ZUPT strongly depends on accurate zero-velocity detection
results and suitable measurement noise.

B. Feature Representations

Visual features play a crucial role in VIO and significantly
affect system precision and stability. Among various visual
features, point features are most commonly used in the gen-
eral texture scene [6], [11], [13], [37]. In certain textureless
environments, robust geometric features such as line features
in PL-VIO [38], structure lines in struct-VIO [39], and plane
features in PLP-VIO [40] are also utilized to maintain the
localization accuracy. Despite the robustness of geometric
features, point features remain the most common and efficient
choice.

Feature positions in VIO are typically parameterized in a
Cartesian coordinate system using three elements, triangulated
from multi-view measurements and corresponding camera
poses. Given that accurate depth is unknown in monocu-
lar camera measurements, alternative representations such as
inverse depth parametrization [41] and parallax angle-based
representation [42] have been proposed to handle features
with minimal parallax. Additionally, feature points can also be
represented using spherical coordinates or with a unit-bearing
vector and a range scalar [43]. Although these representations
prove effective in certain cases, errors in their specific values
will persist after the one-time triangulation in MSCKF. The
same challenge also arises in MSCKF when employing the
aforementioned geometric and learning-based features.

Recent research has demonstrated that the two-view visual
geometry is equivalent to a pair of pose-only constraints
[8], effectively decoupling camera poses from 3D feature
positions. Consequently, the pose-only constraint implicitly
represents a feature’s position using only visual measurements
and poses of the two views. This pose-only representation has
been extended to multi-view imaging geometry, targeting to
efficiently solve the 3D visual construction problem [9]. By
decoupling camera poses from feature positions, the pose-only
solution dramatically simplifies the optimization problem in
visual construction, providing an analytical reconstruction for
spatial feature coordinates. Similarly, the pose-only represen-
tation is also employed in the optimization-based VIO system,

such as PO-VINS [44] and PIPO-SLAM [45], showcasing
superior computational efficiency while maintaining localiza-
tion accuracy. Although filter-based VIOs address the same
state estimation problem as optimization-based VIOs, their
distinct system frameworks lead to different implementation
strategies to incorporate pose-only representation, especially
in the update strategy and base-frame selection. However, the
incorporation of pose-only representation into the filter-based
VIO remains unexplored. With the decoupling of camera poses
and feature 3D positions in the pose-only representation, the
filter-based VIO can explicitly eliminate feature coordinates
from the measurement equation. Therefore, the challenges of
linearization errors in feature positions and delayed visual
measurement updates encountered in the traditional MSCKF-
based VIO are expected to be addressed expertly, significantly
improving its localization performance.

In summary, filter-based VIO solutions such as MSCKF
are distinguished by their remarkable computational efficiency.
However, concerns persist regarding their localization perfor-
mance, including delayed measurement updates, linearization
errors on feature positions, and insufficient localization ro-
bustness. Currently employed feature representations fail to
tackle these challenges, while the pose-only representation
shows the potential to address them, a potential that remains
unexplored. Therefore, to resolve these concerns in MSCKEF,
we incorporate the pose-only representation into the filter-
based VIO and propose PO-KF.

III. PRELIMINARY OF MSCKF-BASED VIO
A. Coordinate Systems

The employed coordinate systems in this paper are detailed
in Table I, where the u-frame has a unified z coordinate, the
p-frame is a two-dimensional frame, and the w-frame aligns
with the gravity direction.

TABLE I
DEFINITIONS OF THE EMPLOYED COORDINATE SYSTEMS

Coordinate system  Notation Origin Axes
IMU frame b-frame IMU center F-R-D
camera frame c-frame  camera’s optical center R-D-F
unified c-frame u-frame  camera’s optical center  R-D-F
pixel frame p-frame  image’s top-left corner R-D
world frame w-frame first IMU position F-R-V

F: forward, R: right, D: down, V: vertical

B. IMU Kinematic and State Equations

1) IMU Kinematic Equation: Since the Earth’s rotation is
generally ignored in low-cost MEMS IMU, we consider the
w-frame as IMU’s reference frame and denote the measured
acceleration and angular velocity as f:,b and wab, respectively.
When modelling the IMU measurement errors, we only con-
sider the dominant error, namely the IMU bias (by, b,), and
measurement white noise (ng4, ng). Besides, in the inertial
navigation system (INS), we compensate for the estimated
IMU bias in the measurements at each step. Therefore, the
IMU measurements in our INS algorithm are expressed as:

N }:/b:fgvb+5ba+na' (1)

Wyp = w?vb + 6by + ng,
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Taking the IMU measurements as input, an INS solves
the navigation state by integrating the kinematic equations.
Building upon the motion kinematic model [46], we derive
the following IMU kinematic equations:

Py = vy, b =Ryfaw+g", Ry = RY i), @
where, p{ and v} denote the IMU’s position and velocity in
the w-frame, respectively, g% is the global gravity, the rotation
matrix R} signifies the IMU’s attitude, and [-], represents the
skew-symmetric matrix of the corresponding vector.

Building upon Eq.(2) and employing the two-sample ap-
proximation [47], we can derive the refined discrete-time INS
update equations using the discrete-time IMU measurements.

2) IMU State Equation: The position error, velocity error,
attitude error, and bias errors of the gyroscope and accelerom-
eter are incorporated in the IMU error-state, described as:

T
ok [(59b,k~)T (omy)" (sut)" @0y (bap)”| -
3)
where, 66, ; represents the attitude error, 5pl‘)”k and 5vl‘)”k are
the position and velocity errors, respectively. Additionally,
0bg 1. and b, ;, denote the gyroscope and accelerometer bias
errors. The error-states of the above parameters are defined as:

RY =R} (I - [6:],)

T =x—0x

; “4)

where, R} is the true attitude, and x represents the other true
states. Correspondingly, Rg’v and & denote the estimated states
with errors, while 6, and dx are the error-states.

By performing error perturbation on Eq.(2) and differential
operations on Eq.(4), we obtain the continuous-time state
equations for position, velocity, and attitude, as shown below:

éb = — [wyb]x Gb - 5bg — Ny
o0y =~ Ry ] 60— RYOb. - Rina. )
opy =0y

The bias errors of the gyroscope and accelerometer are
modelled as the first-order Gauss-Markov process [47]. Based
on the state equations in Eq.(5) and the model of IMU bias
errors, we derive the state transition matrix F'; and noise-
driven matrix G; for the IMU’s error-state.

C. Multi-State Constraint Kalman Filter

1) State Vector and Equation: In addition to the IMU error-
state, the error-states of the cloned n historical IMU poses are
also included in the state vector of MSCKF. Denoting the IMU
pose at the i-th timestamp as Ty, = {Ry), py. }, we obtain the
complete state vector of MSCKF as:

zip = [(or)T 0T, oTy, sty 1", (6
where, 6T¥i = {(abi)T (5p§_)TLis the error-states of the i-
th IMU pose. The camera poses, T;, = {Ry", py }, required in
the measurement model, are transformed from the cloned IMU

poses using the camera-IMU extrinsic parameters {R?, p2}.

Given that the cloned IMU poses are non-dynamic quantities
and remain unchanged over time, the continuous-time differ-
ential equation of the i-th cloned IMU pose is 5’1.":1 = 0¢.
Therefore, the state transition matrix and noise-driven matrix
for the cloned IMU poses are both zero matrices.

Stacking the above state equations together and discretizing
them, we obtain the discrete-time full-state equation as:

Tpt1 = Prxr + Grwy, @)

where, ®;, and G, are the discrete-time state transition and
noise-driven matrices, wy, is the equivalent discretization of
the driving white noise, with the equivalent intensity Q.

2) State Propagation and Augmentation: Since the state
vector includes the IMU state and the cloned historical IMU
poses, ®; and G can be split as follows:

Dk 015><(6n):| { Gk }
R L Gr=| M@
i |:0(6n)><15 I, "7 06nx12 ®

where, @1 ) = exp (ftt:,l FI(t)dt) ~ I + FAty. Utilizing
the complete transition matrix, we propagate the system state
vector at i1 as Typ—1 = PrTk.

We partition the state covariance matrix P using the similar
split form as presented in Eq.(8). Then the covariance matrix
can be propagated with the following expression [5]:
‘I’I,kPI,kfl‘bfk

Plri1®ly

@ kP k-1

+GLQGE. (9
PT,kfl ka k ()

Ppip—1 = {

When a new image is received, we propagate the current
IMU state and covariance to the image timestamp. Then, the
current IMU pose is added to the state vector and the state
covariance matrix is augmented as follows [5]:

T
Iy Iy

Py, P )

¥ l:J6><N:| ¥ |:J6><N:|

where, N = 15 + 6n is the dimension of the state vector, and
Jexn is the Jacobian matrix of the augmented poses to the
system state vector. When marginalization, the oldest cloned
IMU pose will be removed from the sliding-window and the
corresponding rows and columns in the covariance matrix will
be eliminated.

3) Measurment Update: When a feature point is lost or
reaches the maximum tracking length in this frame, all its
visual measurements are employed to triangulate its 3D po-
sition p}v and perform measurement updates in MSCKF [5],
[6]. The reprojection measurement equation of this feature in
the c;-frame is formulated as follows [5], [6]:

where, ﬁl}i and zl}" are the visual measurement and the

reprojection error, h,, and h, are the projection and distortion
functions in the camera imaging process, h,, is the normalized
process of the feature’s position in the c;-frame, h; is the
coordinates transformation function, and K and ¢ are the
camera’s projection and distortion parameters.

Stacking measurements of all features and simplifying the
equation, we obtain the complete MSCKF measurement equa-
tion as follows:

(10)

2P = H,x + H;0p} +nP, (12)
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Fig. 1. Overview of the proposed PO-KF.

where, H, and H are the measurement Jacobian matrices
with respect to the state vector and feature’s position, re-
spectively. Additionally, 2P and mP denote the measurement
innovation and noise, respectively.

Then, nullspace projection is performed to eliminate the
feature position from Eq.(12). Before proceeding with the
standard Kalman update, measurement compression is also
performed to reduce the measurement dimension.

D. Zero-Velocity Update

When carriers remain stationary for an extended period, the
camera frames corresponding to the cloned timestamps yield
nearly identical poses. The limited parallax causes feature
triangulation to fail, and no measurements are available to
update the system state, leading to quick state divergence.
Fortunately, the ZUPT, including zero-velocity update and
zero-heading-rate update, serves as effective supplementary
measurement information for VIO in stationary situations.
Leveraging the covariance of several original IMU measure-
ments and the disparity of visual measurements, we can
accurately detect stationary periods [48]. Subsequently, we
calculate the measurement innovations and matrices from the
following measurement equations:

Zy =Vp — Ny, Zy = egR{,”wf’Vb + Ny, (13)

where, e3 = [0 0 1], n, and ny are the measurement
noises. To enhance the ZUPT constraint, we also incorporate
the integral measurement model of the two measurement
equations [49] in our implementation. It is also worth mention-
ing that appropriate measurement noises must be empirically
preset, as the above measurements are virtual observations.
Besides, the noise intensities have a considerable impact on
the constraint strength of the estimated state.

IV. SYSTEM DESIGN OF PO-KF

The system overview of our proposed PO-KF is depicted
in Fig.1. After system initialization, IMU measurements and
image data are processed for INS state recurrence and feature
extraction and tracking. Then, the solved INS states and
their covariance are propagated and augmented. Once enough
cloned poses and visual measurements have been accumulated
for state updates, the best base-frames are selected and pose-
only measurement models are constructed. Finally, the selected
visual measurements are used to update the system state.

Compared to MSCKF-based VIO, the proposed PO-KF
shares similar state propagation and augmentation processes
but differs in its measurement models and update strategies.

»//\\. AN
//‘/ // /

\J

Fig. 2. Two measurement update strategies, with camera colors denoting
the timestamp. (a) MSCKF update strategy: all measurements are updated at
the green timestamp; (b) PO-KF update strategy: black measurements denote
base-frames, and other measurements are updated at their own timestamp.

Fig.2 illustrates the update strategies of MSCKF and PO-
KF, with various timestamps represented by different colors.
As shown in Fig.2a, MSCKF constructs measurement models
using all measurements of a feature and updates the system
state at the time of the last measurement. In contrast, PO-
KF formulates its measurement equation using the newest
measurement and the selected base-frames once the feature
tracking length reaches 3 frames.

In addition to the pose-only measurement model and base-
frame selection modules, PO-KF also extends the state equa-
tion by incorporating camera-IMU extrinsic calibration to en-
hance the system robustness. Besides, specialized strategies are
designed for managing the cloned poses and visual features to
support the measurement updates in PO-KF. These strategies
include a dedicated strategy for handling zero-velocity states.
The details of each module shown in Fig.1 will be explained
in the following subsections.

1) Initialization: For robust and accurate initialization, PO-
KF automatically employs both static initialization [6] [SO] and
dynamic initialization [51] to determine the initial velocity, roll
and pitch angles, and IMU biases. The initial absolute position
and absolute heading angle are set to 0, while their correspond-
ing covariances are also initialized to 0. The covariances for
the remaining states are assigned empirical values.

2) Feature Tracking and Extraction: The visual front-end
of PO-KF extracts the Shi-Tomasi corner points from the new
images as visual features and utilizes Optical-Flow-Tracking
for efficient and accurate feature tracking. To ensure a bal-
anced feature distribution, the image in divided into several
grids, and feature points are extracted evenly within each grid.
Additionally, the distance between feature points is regulated
to prevent clustering.

3) State Propagation and Augmentation: On the basis of
state propagation and augmentation procedures of standard
MSCKEF, PO-KF incorporates online calibration of the camera-
IMU extrinsic parameters and time offset [26], [27]. We
model the extrinsic parameters and time offset as random
walk processes and augment their error-states, denoted as
6T = [(Gc,b)T (5pg)T] and dt4, into the state vector.

The error-state definitions of the camera-IMU relative po-
sition and the time offset follow the definition in Eq.(4). The
error-state of the camera-IMU relative rotation is defined as:
(14)

Ry =R (I — [Bes), )
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where, RY and R'c’ denote the true and estimated rotation
between the IMU and camera, and 6, is the error-state.

These error-states of extrinsic and time offset are augmented
into the state vector xj;, and their driven noises are added into
the system noises wy. The new total state vector xj is:

ap = (@) OTY bta OT}, 5T, oty ]"
15)

The state transition matrix and the noise-driven matrix are
modified corresponding to the new state vector and system
noise. During covariance augmentation, we introduce J, the
Jacobian matrix of the cloned pose with respect to the time
offset under the uniform velocity assumption, to update the
Jexn in Eq.(10). This allows the time offset to be updated
when the Kalman update is performed without modelling the
time offset in the measurement equation [27]. In this way, the

updated Jgy (n47) and Jy are expressed as:

Joxn+m) = [L6 Osxo Osx J: Ogxen]

s ()" ()]

4) Feature Database and Sliding-Window Management:
The proposed PO-KF dynamically manages the sliding-
window and feature database. Sliding-window management in
PO-KF is similar to that in MSCKF, which adds the IMU
pose at the newest image time into the sliding-window and
deletes the oldest cloned pose when the sliding-window is
full. The IMU pose at every image time is included in the
sliding-window.

Feature management in PO-KF differs from that in MSCKF.
In MSCKE, all visual measurements of a feature are employed
together to construct the measurement model and update the
system state, as illustrated in Fig. 2. On the contrary, PO-
KF constructs the feature’s measurement equation only in
the newest image plane. This implies that earlier visual mea-
surements in the feature database are not considered system
observations. Consequently, the elimination of the feature’s
all measurements, which is performed after the measurement
update in MSCKEF, is not required in PO-KF. Instead, PO-KF
adds the newest extracted visual measurements to the feature
management module and removes feature measurements under
the following two conditions. First, the oldest measurement
of a feature is eliminated when its measurements exceed the
sliding-window size. Second, all measurements of a feature
are removed when it is lost.

5) Strategy for Zero-Velocity States: We introduce special
management strategies for the sliding-window and feature
database in PO-KF to effectively handle zero-velocity states
without ZUPT. During the stationary periods, the newest
two cloned IMU poses are very similar under the regular
management strategies, resulting in limited parallax within the
sliding-window. To guarantee sufficient parallax, we only need
to marginalize the newest cloned IMU pose and the newest
visual measurements in PO-KF, rather than the oldest ones,
during the zero-velocity states. These special strategies enable
PO-KF to maintain enough parallax in the remaining IMU
poses within the sliding-window, even if the carrier keeps
stationary for an extended period. Correspondingly, PO-KF

(16)

can construct a valid measurement equation for the newest
visual measurement and sustain accurate localization without
relying on ZUPT.

6) Base-Frame Selection and Measurement Model: Sub-
sequently, the current measurements are picked out from
the feature database to construct the pose-only measurement
model. Specifically, the best two base-frames for each feature
are firstly selected from the sliding-window. Then, they are
employed in the pose-only measurement model to acquire the
complete measurement matrix, innovation, and noise. Finally,
the Kalman update is performed, and the system states are
updated using the estimated error-states.

Detailed information on the construction of the pose-only
measurement model and the algorithm design of the base-
frame selection is provided in the following two sections.

V. POSE-ONLY VISUAL MEASUREMENT MODEL

This section introduces the state measurement model based
on the pose-only representation, including the pose-only repre-
sentation, the detailed measurement equations, and an analysis
of the associated advantage.

A. Pose-Only Representation

The pose-only representation, equivalent to the classical
multi-view geometry, is raised in [8], [9] to estimate camera
motion efficiently and reconstruct the spatial feature coor-
dinates analytically. In this subsection, we first present the
derivation of the pose-only representation.

Consider a 3D feature point in the w-frame, with its
coordinates denoted as pY, is observed in several images. The
coordinate of this feature in the i-th camera frame is denoted
as p}f while that in the unified camera frame is denoted as z';'.
The feature position can be derived using the camera pose as
follows:

py =RpS +pi, = 25 REzY +pg, (17)

where, {Ry,p? } is the i-th camera pose in the w-frame
and 2§ = pY_ is the feature depth in the c;-frame. The
normalized measurement in the u;-frame :c‘;c‘ is derived from
back projection and undistortion from the origin measurement.

Selecting the feature’s measurement in the i-th and j-th
images, we obtain the two-view pose-only constraints between

the image pair (4, j):
(18)

2§ R Ty + pel = z;j ml}j .

Left-multipling {m;’ } on both sides of Eq.(18), we yield
X

the following expression:
2 [mlf} . R¢ zf =~ {mt}]} § P (19)

Taking the magnitude of Eq.(19), it yields the feature depth:

- wu’} X cj
. I-[=7] L9 oo
DR

Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:06:46 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2025.3526811

JOURNAL OF KIEX CLASS FILES

where, d;z,’i] ) is the feature depth constrained by the image pair
(¢,7), and 6; ; denotes the parallax of the two base-frames.
Similarly, the feature depth in the c;-frame is marked as d(” )

Now, we represent the features’ 3D positions with only

camera poses and their normalized measurements as follows:

(1,5) (1)

ci _ 4(4,9) u; u
Py =dyxy . py =dy ) xy

B. Measurement Update

When the visual measurement of the feature pf”f’ at [-th
image comes, we construct its measurement equation in the p;-
frame using the current measurement p*' and the 3D position
represented by the image pair (7,j). We name the image
pair (i,7) as the two base-frames of the feature’s current
measurement. The two base-frames appear in the feature’s
current reprojection equation, replacing the feature’s position.
The measurement equation of this feature p} in the p;-frame
are as follows:

2 =Y~y (g (b (he (aF7 RY PR BY ) ) K) €)

(22)
where, z'/ is known as the measurement innovation, hy, hy,
h, and h; are defined in Sec.IlI-C3, and K and ¢ are the
camera intrinsic parameters.

As described in Eq.(20), the feature’s depth d(“j) is rep-
resented with the poses and measurements of 1ts ‘two base-
frames. The frame poses are a function of the cloned IMU
poses and the camera-IMU extrinsic parameters, all of which
are included in the state vector x. Therefore, except for the
known camera’s intrinsic parameters and the feature’s mea-
surements, the pose-only measurement model is only related
to the state vector and has nothing to do with the feature’s 3D
position. Consequently, Eq.(22) can be simplified as follows:

(23)

where, H , is the Jacobian matrix with respect to the complete
state vector, and n*! is the measurement noise. In the following
content, we present the complete expression of the measure-
ment equation and derive the complete Jacobian matrix.

1) Jacobian of the camera pose to the state vector:
Denoting the error-state of the i-th camera pose as 0T, =

T
[9? (5péﬂ_)T , we derive its relation with the error-states
of the ¢-th IMU pose and the extrinsic parameters as:

P

zl}l = Hmyfa:+n§c‘,

oc,b

0,71 I3 03 Ry 03| | 6pd

] = [R wil, Ry Ry B, L) [ [ @Y
th"’vi

Therefore, we get the Jacobian matrix of the -th camera
pose with respect to the complete state vector as:

N |:03><15 I3 03 - R} 03 }
J0 = .

0sx15 RY [pf], —RY —Ry, fc] I3 -
(25)
The Jacoblan matrles of the j-th and [-th camera poses,
denoted as J i and J , can be derived in the same way.
2) Jacobian of the feature depth to the camera poses: The
feature depth d( 7 ) s represented using the poses of the two-
base frames, as shown in Eq.(20). We denote the Jacobian
matrices to the two base-frames as J def and J dewl, of which

the detailed derivation is presented in Appendlx Al

3) Jacobian of the transformation function: Denoting fea-
ture’s position in the c;-frame as pcfl, the coordinate transfor-
mation function are expressed as:

P} =h =Ry (d\VRYY +pY - pY). (26)

Durlng the transform process, we verify the validity of the
depth d ’J ) and ensure a positive feature depth in the c;-
frame for numerlcal stability. Feature measurements resulting
in invalid or negative feature depths will be disregarded. Per-
forming error disturbance on Eq.(26), we derive the Jacobian
matrices of p;l to the above variables, as shown below:

P}

, .

T =Raa,
<1

7 [ ], w]

g Hpcl}
T:,/L - f X
4) Jacobian of the normalized function: The normalized
process calculates the normalized feature coordinates in the

u;-frame. The normalized coordinate, IL‘l}L = hu(p;l), and the
Jacobian matrix with respect to pj} are as follows:

27)

Ry

Pl 1 _ Pra
] uy <l Cl
w mf P | gTs Pyz (v} .)
Ty = » yd o = P
yf g‘ly Py 0 C} _ Cf,y 5
Py, Py (v7..)

28)

5) Jacobian of the distortion and projection functions:
We denote the distorted normaliTzed feature coordinates as
z, = hy(z}) = [osl}l’d y;id] , and denote the distorted
feature measurement in the p;-frame as p‘}’ = hy(z},) =

T . . . .
[upl vpl} . The Jacobian matrices of the dlstortlon and

projection functions are denoted as J i f “ and J"} Lu » Tespec-

tively. The detailed distortion and prO_]efCtIOIl procéss and the
derivations of the Jacobian matrices are given in Appendix B.

6) Complete measurement Jacobian matrix: Finally, we
solve the complete Jacobian matrix of the pose-only measure-
ment model based on the chain rule, as shown below:

H, ;= J J {,dJ
(JZL- (de o de’Jf”) T P
(29)
By now, we construct the complete measurement model for
the feature p¥ at timestamp ¢, Before including in the overall
measurement model, feature measurements are also checked
by the standard chi-square test. By stacking the measurement
equations of all features, we obtain the total measurement
matrix, innovation, and noise. Then we can directly calculate
the updated system state vector using the standard Kalman
update equation without nullspace projection.

C. Analysis of the Model’s Advantage

The proposed PO-KF is essentially a filter-based VIO,
where the state propagation and measurement update are
performed once at each timestamp. Therefore, we choose
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MSCKE, the most popular filter-based VIO among the state-
of-the-art (SOTA) methods, as the baseline for analysis.

The advantages of the proposed PO-KF compared with
MSCKEF are twofold. The first is to eliminate the linearization
error of features’ 3D positions, and the second is the imme-
diate updating of visual measurements. Here, we analyze the
two advantages in detail.

1) Elimination of feature’s 3D positions: As indicated in
Eq.(12), feature 3D positions are essential in formulating the
measurement equation of MSCKEF. As all visual measurements
are used for feature triangulation, both limited parallax and
unstable numerical solutions lead to failures. Consequently,
when feature triangulation fails, the corresponding all visual
measurements become unusable for the system state, limiting
the availability of measurements. However, PO-KF can for-
mulate the measurement equation as long as the parallax 0; ;
between the two base-frames is non-zero. Furthermore, even
with a well-constructed measurement equation, linearization
errors on feature 3D positions are still introduced into the mea-
surement matrix and nullspace projection process of MSCKF.
In contrast, the PO-KF measurement equation, as defined in
Eq.(23), theoretically eliminates feature 3D positions, thereby
avoiding the linearization errors on these positions. Generally,
PO-KF yields more valid visual measurements and a more
accurate measurement equation.

2) Immediate updating of visual measurements: In the
update strategy of MSCKF shown in Fig.2a, a feature is trian-
gulated only when it is lost or reaches the maximum tracking
length, known as delayed feature initialization. That means
that all visual measurements of this feature are employed
together to construct measurement equations and update the
system state at the green camera timestamp. In contrast, PO-
KF formulates the measurement equation as long as a feature
has 3 or more measurements, independent of the feature’s 3D
position. As a result, after the feature’s second observation, the
newest visual measurement is immediately used to update the
system state, as illustrated in Fig.2b. The immediate updating
capability of PO-KF is advantageous, hopefully allowing it
to maintain a small error state and thus reduce linearization
errors on the system state in the measurement equation.

3) Quantative Validation: We analyze the measurement
counts of both MSCKF and PO-KF using a group of common
robot data. As depicted in Fig.3, the upper subplot illustrates
the number of measurements inputted into the measurement
model at each timestamp, while the lower subplot displays the
measurement counts employed to update the system. The input
and updated measurement numbers in MSCKF demonstrate
larger fluctuations compared to PO-KF due to delayed feature
initialization. The average input measurement sizes of PO-KF
and MSCKF, measuring 106 and 108, are quite similar since
they employ the same visual front-end. However, the average
updated measurement counts of MSCKF and PO-KF are 62
and 83, respectively. The reduction of measurement counts
in MSCKF primarily results from the unsuccessful feature
triangulation, whereas in PO-KF, it results from features
having fewer than 3 measurements. The greater reduction in
measurement counts in MSCKF implies that 19 feature points,
each with 3 or more measurements, are discarded due to failed
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Fig. 3. Input and updated measurement counts of measurement update
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Fig. 4. Magnitudes of the updated current IMU pose error-states in MSCKF
and PO-KF.

triangulation. Thus, the elimination of feature positions from
the measurement equation ensures more visual measurements
in PO-KF compared to MSCKF.

To validate the advantages of the immediate update, we
conducted a comparison of the correction error-state calculated
from the Kalman update process for both MSCKF and PO-
KF. Fig.4 displays the correction magnitude of the current
IMU’s position and attitude. Benefiting from the constant
updated measurement count, the state vector of PO-KF in
Fig.4 exhibits a more stable correction magnitude compared
to MSCKEF. Consequently, the immediate update also ensures
that the system state of PO-KF remains closer to the truth
state. Therefore, the magnitude of calculated position and
attitude errors in PO-KF are significantly smaller than those
in MSCKEF, which further reflects the advantages of PO-KF.

VI. INFORMATION MATRIX-DERIVED BASE-FRAME
SELECTION

The pose-only measurement model requires two base-
frames to represent a feature’s depth and construct its mea-
surement equation. When the feature is tracked for more
than 3 frames, there are multiple options for selecting its
base-frames. Differing from taking the maximum parallax
as the selection criterion in optimization-based solutions, we
introduce a dedicated base-frame selection algorithm for PO-
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KF in this section, designed to choose the optimal two base-
frames for each feature measurement.

A. Selection Formulation

The derived pose-only measurement model for a single
feature at a time essentially represents a constraint involving
camera poses of the current image frame and the previous
two base-frames. In the context of the current observed frame,
denoted as n (n > 3), the selection of base frames involves
considering historical observed frames from 1 to n — 1. Since
the INS diverges with time, we opt to select the 1-st observed
frame as the feature’s first base-frame to best mitigate the
INS divergence. Thus, as depicted in Fig.5, the base-frame
selection problem becomes selecting one base-frame from the
2nd and (n — 1)-th historically observed frames to formulate
the most effective constraint on the camera poses.

The constraint on the camera poses of the current and the
two base-frames is regarded as the indicator of the base-frame
selection. Denoting the indices of the three camera frames as 1,
j, and [, we formulate the constraint between the three camera
poses and the feature’s position as follows:

uj J ACi

. C : Cj
2z =Relzxy +po

Sy = R 22 + pll. (30)
fial = Re 22y +p;

The total dimension of the feature’s three measurements is
6, whereas that of the three camera poses is 18. The above
equation set is an underdetermined equation concerning the
three camera poses, and as such, a unique solution cannot be
determined. As depicted in Fig.5, the feature’s measurements
establish relative constraints among the three observed camera
poses and the feature’s position, i.e., the feature’s depths in
the three camera frames. Thus, to avoid the aforementioned
underdetermined problem, we put our focus on the feature
depths and consider the equation set as a constraint with
respect to the three depths. Consequently, the base-frame
selection problem is transformed into selecting the second
base-frame to obtain the most accurate feature depths in the
three camera frames.

B. Selection Indicator

To derive the equations set corresponding to the feature’s
three depths, we left multiply [CEL}J} X {w‘}’} g and {w‘ﬂ 5 on
both sides of the three equations in Eq.(30) and simplify each
equation individually. Thus we obtain the following equations:

o [ay], Retey = - [o7] o
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Fig. 5 . PO-KF measurement Fig. 6. The diagram of base-frame selection.
constraint.

Transform the equation set into an overdetermined equation
with respect to the feature’s three depths, as shown below:

us Cious u s
j 5 % J] J
x R @ o 0- @
[ f}x c; Ty . 3><t g 3x1 in [ {\ prl
1 ] G == 1 1
03x1 [mf}x Re,jz 03x1 icl [“”I{}X Pch
ug i Y i Ak
03x1 03x1 7], Rejef | —— [=7], »ei
@x
. (32)

where, x denotes the vector of the feature’s three depths, A is
its coefficient matrix, and b represents the constant vector. The
equation set is expressed as Ax = b. When solving for the
feature’s depths using the least squares method, we transform
the equation into A" Ax = ATb. The current coefficient
matrix of x is referred to as the information matrix of the
variables, denoted as 2 = ATA, which contains the accuracy
of the variables. To quantitatively compare the accuracy when
selecting different base-frames, we take the determinant value
of the information matrix dg = det (€2) as the indicator.

Denoting [wlﬂ ) Rz} = 0}; as the parallax and 6, ; =
|0;7;|| as the parallax magnitude in Eq.(20), we obtain the
expression of the information matrix as:

612 o 0 :;)> 0 0
" 2
Q= 0 165,117 o |=10 (65,) 0
0 0 ”01'7[1”2 0 0 (9’%1)
(33)

The determinant value of the information matrix is:

do = (0;; -6, '9i,l)2 x 050510, 34

That is, the indicator can be simplified as the product of
parallax magnitudes of every two camera frames. Then we
identify the second base-frame that results in the largest dg
throughout the historical camera frames between the 2nd and
(n — 1)-th frames.

C. Selection Algorithm Analysis

To intuitively know the selection result of the proposed algo-
rithm, we conduct an analysis based on common linear motion
in this subsection. Fig.6 illustrates the selected base-frames
and current image frame, where ( is the angle between the
o:‘}’ and the trajectory, a1, aig, and « are the angles between the
three visual measurements. The parallax magnitude between
the i-th and j-th camera frames is as follows:

05 = 1031l = = [l

sin (1), (35)

where |2 ]| = o5 127 | = e
a normalized z-coordinate of 1.

. w
, as m‘} and = H have
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Fig. 7. The selected angles in the simulation test. The red plane represents
the selected angle, the green plane denotes half of a.

We can get the other two parallax magnitudes in the
same way. Multiplying the magnitudes together and excluding
the constant o and [, we obtain the simplified base-frame
selection indicator. The base-frame selection is to select the
a7 that satisfies the following requirement:

arg max (dg) o arg max <sm(al) sinfa — ) > (36)
[e %) [e5%

cos? (B + aq)

We conducted a simulation to analyze the selected angle ;.
Based on the field of view of a typical camera, we set «, (3,
and a.+ f within the range of [0, 50] deg, and set «; within the
range of [0,a]deg. The selected angle oy of the simulation
is presented in Fig.7, where the chosen angle demonstrates a
clear correlation with half of «, especially when « is below
30 deg. Since feature depths in outdoor scenes are generally
much larger than the baseline between the i-th and the j-th
cameras, the angle « between visual measurements is typically
smaller than 30 deg. Consequently, we treat the selected angle
as o = ap = o for the following analysis.

Denoting the two baselines between the c;, ¢, and ¢; frames
as dy and ds, we establish their correlation with the feature
distances in the i-th and j-th frames as follows:

dq d® sin oy dc
do d sin g dei”

(37

Since most features are far from the camera, the two
distances d“ and d° are generally large but similar, resulting
in d; being quite close to ds. If we further assume the carrier
moves with uniform velocity, the selected second base-frame
most likely lands near the middle of the historical frames.
Any irregular movements, such as acceleration or deceleration,
would cause the selected frame to shift forward or backward
from the middle frame. Nonetheless, nearly uniform linear
motion is the most common movement for a wheeled carrier
or a pedestrian, resulting in the overall selected base-frame
being around the middle of the historical frames.

VII. EXPERIMENTS AND RESULTS
A. Experiments Description

The proposed PO-KF is evaluated on both publicly available
and privately obtained datasets, covering three distinct carriers.
Specifically, the public datasets comprise the KAIST urban
dataset [52] and the TUM-VI dataset [53] collected from com-
mercial cars and pedestrians. The private dataset is obtained
from a low-speed wheeled robot.

1) Public Dataset: The public KAIST urban dataset is a
vehicle’s multi-sensor dataset in a complex urban environment,
where the carrier moves fast with a maximum speed of 15
m/s. Our experiment only utilizes the industrial-grade MEMS
IMU measurements and the left camera images. The camera
captures images at a resolution of 1280*560 and a frame rate
of 10Hz, while the IMU records data at a rate of 100Hz.
Due to the less-smooth ground truth in this dataset, it is
primarily suitable for evaluating the absolute pose errors. Our
experiments encompass five sequences in this dataset, namely
urban28, urban30, urban32, urban38, and urban39. These
sequences collectively span a total time of 8321 seconds and
cover a cumulative distance of 45525 meters.

The public TUM-VI dataset is a widely used benchmark
with a diverse set of sequences for evaluating visual-inertial
odometry. In our evaluation, we use the left camera images
with 512*%512 resolution at 20Hz and IMU measurements
at 200Hz. We quantitatively evaluate localization accuracy
only on the room series sequences, which are notable for
their continuous ground truth within this dataset. Additionally,
we include the magistrale series sequences for qualitative
comparison. The selected sequences span a total duration of
4261 seconds and cover a total distance of 4625 meters.

2) Private Robot Dataset: The multi-sensor wheeled robot
platform, capable of reaching a maximum speed of 1.5m/s, is
illustrated in Fig.8 and serves as the test carrier for our private
dataset. Our experiments utilize the industrial-grade MEMS
IMU with a data rate of 200Hz, and the left gray camera
with a resolution of 800%600 and a frame rate of 10Hz. The
ground truth system includes a navigation-grade IMU and a
GNSS RTK receiver, providing smoothed trajectories for the
accurate evaluation of the absolute and relative pose errors
of the tested system. The private dataset is systematically
collected within a typical outdoor campus scene, as depicted
in Fig.9. Comprising eight distinct sequences of robot data
denoted as Robot-A~Robot-H, the dataset spans a cumulative
time of 11550 seconds and a total distance of 14821 meters.

3) Evaluation Method: We implemented our PO-KF with
the design details in Sec. IV. For a comparative analysis,
we also developed an MSCKF-based VIO system on the
SOTA open-sourced platform OpenVINS [6] as our baseline
method. Importantly, the baseline system employs the same
visual front-end and state equations as PO-KF, ensuring a
fair and consistent comparison. For clarity, we will refer to
this baseline system, i.e., the modified OpenVINS, simply
as ‘OpenVINS’ in the following experiments. Furthermore,
to provide a comprehensive evaluation, we benchmark our
PO-KF against SOTA open-source optimization-based VINS
platforms, VINS-Mono [37] and IC-VINS (the GNSS-free
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Fig. 8. The wheeled robot for the private dataset.

version included in the IC-GVINS [11]). Throughout the
VIO system evaluations, we have carefully tuned and applied
appropriate hyperparameters. Notably, the OpenVINS and
PO-KF systems share the same hyperparameters across the
experiments. Specifically, the visual measurement noise for
all tested methods is set to 1 pixel. To mitigate the impact of
outliers, a chi-square test with 95% confidence is employed in
both OpenVINS and PO-KF, while robust kernels are utilized
in VINS-Mono and IC-VINS.

For quantitative evaluation of localization accuracy, we
utilize the EVO [54] tools, which include metrics such as
absolute translation error (ATE) and absolute rotation error
(ARE) over the entire test sequence, as well as relative
translation error (RTE) and relative rotation error (RRE) across
various trajectory lengths. In the following subsections, we
systematically evaluate PO-KF in terms of localization accu-
racy across different datasets, the effectiveness of the base-
frame selection algorithm, localization robustness under two
challenging conditions, and real-time performance.

B. Experiments on Localization Accuracy

1) Public KAIST Urban Dataset: As VINS-Mono reboots
when the carrier is stationary in this dataset, we compare PO-
KF only with OpenVINS and IC-VINS across this dataset.
For a clearer comparison of localization accuracy, we present
the result trajectories of urban38 data in Fig.10, aligning
the start points of both result trajectories with the ground
truth trajectory. The overall trajectory in Fig.10 evidently
demonstrate that PO-KF outperforms both OpenVINS and IC-
VINS in terms of trajectory fitness.

The trajectory illustrated in the subfigures of Fig.10 evi-
dently demonstrates that PO-KF outperforms both OpenVINS
and IC-VINS regarding trajectory smoothness. As shown in
the subfigures, the occasional jumps observed in the Open-
VINS trajectory, mainly result from the delayed updates
inherent to the MSCKF-based method. Although IC-VINS

Fig. 9. The test trajectories of the private dataset.
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Fig. 10. The result trajectories of the KAIST urban38 data. All trajectories
start from the same start initial point and end at distinct stars, each represented
by different colors.

iteratively refines feature positions, its measurement updates
are also delayed until sufficient observations are available for
feature triangulation. In contrast, the immediate measurement
update in PO-KF maintains error-states at a lower level and
ensures a smoother trajectory. Moreover, in terms of trajectory
alignment, the trajectory produced by PO-KF in Fig.10 ex-
hibits the closest endpoint and best overall alignment with the
truth trajectory compared to OpenVINS and IC-VINS, which
highlights the superior localization accuracy of PO-KF.

We summarize the absolute pose errors for OpenVINS,
IC-VINS, and PO-KF on the KAIST dataset in Table II.
Across the five groups of data in Table II, PO-KF consistently
produces significantly smaller pose errors compared to the
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Fig. 11. The result trajectories of the TUM-VI magistrale series sequences.
MSCKF-based OpenVINS. Additionally, PO-KF even demon- TABLE III

strates superior localization accuracy across a greater number
of datasets compared to the optimization-based IC-VINS. The
root-mean-square (RMS) values of AREs and ATEs for PO-
KF are both smaller than those of OpenVINS and IC-VINS,
further showcasing its superiority in localization performance.
Statistically, the filter-based PO-KF achieves a 17% reduction
in the ARE and a 39% reduction in ATE compared to the
MSCKF-based OpenVINS.

TABLE I
ABSOLUTE POSE ERRORS (DEG / M) ON THE KAIST URBAN DATASET

Sequence OpenVINS IC-VINS PO-KF

urban28 2.88/29.95 2.16 /1 12.70 2.01/14.40
urban30 2.40/ 16.67 2.44 1 12.48 2.19 /13.16
urban32 1.79 7 19.19 1.56 / 12.86 1.61/9.59
urban38 1.86/ 11.32 0.89 / 10.37 1.44 / 8.42
urban39 1.70 / 11.86 1.87/13.83 1.59 / 11.63
RMS 2.17 7 19.04 1.86 / 12.50 1.79 / 11.65

2) Public TUM-VI Dataset: We further evaluate the local-
ization performance of PO-KF on the TUM-VI dataset. IC-
VINS is excluded from testing this dataset as it lacks support
for fisheye camera images. We compute the ATEs for the room
series sequences using their ground truth and summarize the
position errors in Table III. Except for room2 and room4 in
this series, PO-KF consistently outperforms both OpenVINS
and VINS-Mono in absolute translation accuracy. Statistically,
PO-KF demonstrates the best localization accuracy among the
three methods, reflecting its SOTA localization capabilities.
Statically, compared to the MSCKF-based OpenVINS, PO-KF
reduces the ATE by 36% for this series data.

The ground truth for the magistrale series data is available
only at the beginning and end of the sequences. To evaluate
the proposed PO-KF, we align the beginning part of the result
trajectories with the ground truth and plot the trajectories in
Fig.11. In the result trajectories for magistralel and magis-
trale4, the endpoints of OpenVINS are closer to the ground
truth compared to those of VINS-Mono and PO-KF. However,

ATES (M) ON THE ROOM SEQUENCES OF THE TUM-VI DATASET

Sequence OpenVINS VINS-Mono PO-KF
rooml 0.05 0.07 0.05
room2 0.06 0.07 0.08
room3 0.09 0.11 0.08
room4 0.18 0.04 0.05
room5 0.10 0.20 0.07
room6 0.12 0.08 0.06

RMS 0.11 0.11 0.07

the OpenVINS trajectories in both sequences exhibit inconsis-
tent headings and positions when passing through the same
corridor multiple times. In contrast, VINS-Mono and PO-KF
maintain more consistent headings and positions. For magis-
trale2 and magistrale5, VINS-Mono and PO-KF demonstrate
consistent headings, positions and endpoints, whereas Open-
VINS experiences significant deviations. Although the three
methods exhibit trajectory inconsistencies for magistrale3 and
magistrale6, PO-KF achieves the closest endpoints with the
ground truth. Furthermore, the trajectories of VINS-Mono and
PO-KF are smoother than those of OpenVINS, particularly
magistrale3 and magistrale6 sequences. Generally, the results
indicate that PO-KF outperforms OpenVINS in localization
performance and achieves comparable performance with the
optimization-based method, VINS-Mono.

3) Private Robot dataset: The localization accuracy of PO-
KF is also evaluated using our private robot dataset. We ini-
tially display the test trajectories of Robot-A and Robot-B data
in Fig.12 and Fig.13. The left subfigures in Fig.12 illustrate the
local positioning results, obviously showcasing the superior
trajectory smoothness of PO-KF and VINS-Mono than IC-
VINS and OpenVINS. Due to the accumulated positioning
errors over time, all four result trajectories gradually diverge
from the ground truth. Nonetheless, the endpoints of PO-KF
in both Fig.12 and Fig.13 exhibit smaller deviations from the
ground truth compared to those of OpenVINS, VINS-Mono,
and IC-VINS. Furthermore, as shown in the sky-blue rectangle
of Fig.13, the maximum trajectory deviation generated by PO-
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TABLE IV
ABSOLUTE POSE ERRORS (DEG / %) ON THE ROBOT DATASET
Sequence  OpenVINS VINS-Mono IC-VINS PO-KF
Robot-A 1.69 / 3.15 0.64 / 3.06 1.02 / 1.62 0.96 / 1.71
Robot-B 1.45/3.46 0.89 / 3.04 0.72 / 2.04 0.67 / 2.23
Robot-C 0.76 / 2.04 0.55/2.48 0.55/1.11 1.0572.32
Robot-D 1.31/1.99 0.76 / 1.91 0.76 / 1.15 0.77 / 1.06
Robot-E 1.00 / 2.39 0.80 / 2.75 0.43 / 1.02 046/ 1.51
Robot-F 0.87 /2.02 0.56 / 1.96 0.76 / 1.80 0.56 / 1.11
Robot-G 0.90 /232 1.05/4.11 0.65 / 1.25 0.50 / 1.20
Robot-H 0.86/1.13 1.06 / 1.86 0.73/ 1.12 0.73 / 1.09
RMS 1.157 241 0.817/2.74 0.72 / 1.43 0.74 / 1.60
TABLE V

RMS OF RELATIVE POSE ERRORS (DEG / %) OF DIFFERENT TRAJECTORY
LENGTHS ON THE ROBOT DATASET

Fig. 12. The result trajectories of the Robot-A data.
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Fig. 13. The result trajectories of the Robot-B data. The sky-blue rectangle
highlights the smaller trajectory drift of PO-KF.

KF are only slightly larger than those of the optimization-
based IC-VINS, while indicating obvious improvements over
OpenVINS and VINS-Mono.

We quantify the ATEs and AREs for OpenVINS, VINS-
Mono, IC-VINS, and PO-KF across all eight data groups
in this dataset, as presented in Table IV. Throughout this
dataset, our filter-based PO-KF achieves rotation accuracy
comparable to both the optimization-based VINS-Mono and
IC-VINS, as well as translation accuracy translation accuracy
comparable to IC-VINS. Notably, PO-KF even demonstrates
significantly higher translation accuracy compared to VINS-
Mono. Furthermore, except for the likely outliers in Robot-
C, PO-KF consistently shows substantially lower absolute
pose errors than OpenVINS. Statistically, PO-KF achieves
similar localization accuracy with IC-VINS and outperforms
both OpenVINS and VINS-Mono. Specifically, compared to
OpenVINS, PO-KF achieves a reduction in ARE of 36% and
ATE of 34% statistically.

Leveraging the continuous and reliable truth trajectories

Length OpenVINS VINS-Mono IC-VINS PO-KF
10m 0.15/2.63 0.09 /2.11 0.15/2.07 0.09 / 1.63
50m 0.39/1.62 0.19 / 1.59 026/ 1.15 0.20 / 0.98
100m 0.61/1.29 0.31/1.27 0.36 /091 0.29 / 0.81
200m 0.93/1.01 0.49 7/ 0.97 0.54/0.71 0.44 / 0.65

in our robot dataset, we conduct a thorough analysis by
calculating the RREs and RTEs for different trajectory lengths
on this dataset. The relative pose evaluation helps eliminate
variations in positioning errors across different trajectories
and mitigates the impact of brief outliers on the statistical
localization accuracy. Namely, the relative pose errors offer
more convincing insights into evaluating the performance of
a recursive localization system. Considering the scale of the
robot test scene, we specifically examine trajectory lengths
of 10m, 50m, 100m, and 200m to evaluate the relative pose
accuracy. We plot the boxplots of the RREs results in Fig.14
and the RTEs results in Fig.15.

The boxplots indicate that the proposed filter-based PO-
KF achieves the best relative rotation and translation accuracy
across various trajectory lengths within this dataset. Specifi-
cally, PO-KF obviously surpasses the optimization-based 1C-
VINS in relative rotation accuracy and significantly outper-
forms the optimization-based VINS-Mono in relative transla-
tion accuracy. Additionally, compared to the MSCKF-based
OpenVINS, PO-KF consistently achieves significantly lower
RREs and RTEs across all trajectory lengths in this dataset. We
statistics the RMS values of these relative pose errors for each
trajectory length, as summarized in Table V, further confirming
the superiority of PO-KF over OpenVINS,VINS-Mono, and
IC-VINS. Notably, the RMS values of relative pose errors for
PO-KF across the four trajectory lengths exhibit nearly a half
error reduction compared to OpenVINS. Specifically, PO-KF
achieves a 52% reduction in RRE and a 38% reduction in RTE
compared to the MSCKF-based OpenVINS.

In summary, experiments conducted across the above three
diverse datasets reveal that PO-KF achieves superior localiza-
tion accuracy compared to both MSCKF-based OpenVINS and
optimization-based VINS-Mono. Particularly, PO-KF achieves
relative pose errors reduced to nearly half of those observed
in OpenVINS.

Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:06:46 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2025.3526811

JOURNAL OF KIEX CLASS FILES

—— OpenVINS

24 VINS-Mono
W | —— IC-VINS
o
~ | — POKF
o
=)
53}
R
k|
<
) é %

J oI % &

10 50 100 200

Distance [m]

Fig. 14. The RREs of Different Trajectory lengths on the robot dataset.

C. Experiments on Base-Frame Selection

The base-frame selection, a key aspect of our pose-only
measurement model, plays a crucial role in achieving the
excellent pose accuracy of PO-KF. In this subsection, we
validate the contribution of our base-frame selection algorithm
through experiments conducted on our robot dataset.

1) Selection Result: Initially, we validate the selected re-
sults of the proposed base-frame selection algorithm. As
detailed in Sec.VI-A, the first base-frame is anchored to the
oldest frame among the historical frames. Our focus here is to
verify the consistency of the selected second base-frame with
the analysis results discussed in Sec.VI-C. Taking the robot
data Robot-F as an example, we record the selected second
base-frame indices and the historical frame size (i.e., feature
tracking length) of each feature point. Subsequently, we cluster
feature points by their tracking lengths and normalize the
selected base-frame indices into the (0,1) range, relative to
their respective tracking lengths. Given the high randomness of
selected indices for short-tracking features, our analysis specif-
ically focuses on features with tracking lengths exceeding 10
frames. We calculate and illustrate the proportions of selected
indices for features with tracking lengths between 10 and 20
frames in Fig.16, where a normalized index of 0.5 represents
the middle frame within a feature’s historical frames.

The findings from Fig.16 clearly indicate that the middle
frames are the most frequently selected by our algorithm
across various tracking lengths. Considering that the robot’s
motion is predominantly characterized by uniform linear
movement, the theoretical selection outcome, as derived in
Sec.VI-C, is expected to be consistently concentrated around
the middle frames. Deviations from the middle frames are
observed when other types of motion are introduced. Addi-
tionally, since uniform linear motion is more prevalent during
shorter tracking intervals (e.g., 10 frames), the selection result
of these shorter tracking lengths in Fig.16 are more centralized
around the middle frame. In general, the selection results
shown in Fig.16 are well-aligned with the analysis presented
in Sec.VI-C, providing robust validation for our base-frame
selection algorithm.

2) Contribution to Accuracy: Next, we assess the impact
of the proposed base-frame selection algorithm on localization
accuracy. For comparison purposes, in addition to the baseline
method OpenVINS, we introduce two alternative base-frame
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Fig. 15. The RTEs of Different Trajectory lengths on the robot dataset.
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Fig. 16. Indices of the selected second base-frames on Robot-F data. Colors
indicate different feature tracking lengths.

selection strategies for PO-KF:

a) POKF-D (PO-KF with deliberate disturbance): This
method deliberately selects a disturbed frame based on the
result from our proposed algorithm. Let the base-frame se-
lected by our algorithm be denoted as j, with alternative
frames ranging from 2 to n — 1. If j is closer to the n — 1-th
frame, POKF-D selects the middle frame between the j-th and
2nd frames as the second base-frame. Otherwise, it selects the
middle frame between the j-th and (n — 1)-th frames.

b) POKF-M (PO-KF with maximum parallax): This
method adopts a base-frame selection strategy employed in
optimization-based systems. Specifically, POKF-M selects the
second newest frame, i.e., the (n — 1)-th frame, as the second
base-frame, since this frame typically exhibits the largest
parallax relative to the first base-frame.

Subsequently, we assess the localization accuracy of POKF-
D and POKF-M using our robot dataset. The localization
errors of OpenVINS, PO-KF, POKF-D, and POKF-M are
compared together for detailed analysis. First, we illustrate
the relative pose errors for different trajectory lengths across
the eight data groups in Fig.17 and Fig.18. These figures in-
tuitively demonstrate that PO-KF achieves smaller pose errors
compared to OpenVINS, POKF-D, and POKF-M across all
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Fig. 17. Relative rotation errors of different base-frame selection methods on the robot dataset. The X-axis represents the different data sequences.
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Fig. 18. Relative translation errors of different base-frame selection methods on the robot dataset. The X-axis represents the different data sequences.

TABLE VI
THE RMS OF RELATIVE POSE ERRORS (DEG / %) OF DIFFERENT
TRAJECTORY LENGTHS ON THE ROBOT DATASET

Length  OpenVINS POKF-D POKF-M PO-KF
10m 0.15/263 0.09/191 0.11/2.66 0.09/1.63
50m 039/162 023/133 024/126 0.20/0.98
100m  0.61/129 036/1.15 037/099 0.29/0.81
200m  093/1.01 051/093 053/0.79 0.44/0.65

data groups. Specifically, compared to PO-KF, the enlargement
of the RTEs in POKF-D and POKF-M is more significant than
the RREs. This reflects that the camera essentially measures
the relative angles between feature points and itself, making
rotation accuracy less sensitive to the choice of base-frames.
Conversely, the accuracy of the feature’s position highly
relies on the spatial distribution of the cameras, including
the base-frames and the current camera frame. Consequently,
inappropriate base-frames in POKF-D and POKF-M lead
to significantly larger position errors. Particularly, POKF-M,
especially for the 10m RTE, generally exhibits larger errors
compared to both PO-KF and POKF-D. This indicates that
the base-frame utilized in optimization-based systems is not
optimal for a filter-based system like PO-KF.

For a quantitative comparison, we calculate and present the
RMS values of RREs and RTEs across all data groups in the
robot dataset in Table VI. POKF-D and POKF-M consistently
exhibit larger relative pose errors compared to PO-KF across
all trajectory lengths, underscoring the significant contribution
of our base-frame selection algorithm to the superior localiza-

TABLE VII
ABSOLUTE POSE ERRORS (DEG / M) OF DIFFERENT BASE-FRAME
SELECTION METHODS ON THE ROBOT DATASET

Sequence  OpenVINS POKF-D POKF-M PO-KF
Robot-A 1.69/3.15 098/1.62 098/186 0.96/1.71
Robot-B 1.45/346 0.65/173 083/251 0.67/2.23
Robot-C 0.76 /2.04 0.96/272 135/245 1.04/2.32
Robot-D  131/199 125/171 1.07/134 0.77 / 1.06
Robot-E~ 1.00/239 0.60/198 051/179 0.46/1.51
Robot-F ~ 0.86/2.02 0.58/127 055/1.17 056/1.11
Robot-G~ 090/231 046/187 054/159 0.50/1.20
Robot-H  0.86/1.13 0.71/1.15 0.76/1.18 0.73 / 1.09
RMS 1157241 0817181 0877180 0.74/1.60

tion of PO-KF. Additionally, Table VII provides the absolute
pose errors for the four methods. Generally, both POKF-D and
POKF-M increase the absolute pose error compared to PO-KF.
Statistically, POKF-D and POKF-M raise the ARE of PO-KF
from 0.74deg to 0.81deg and 0.87deg, respectively, and the
ATE from 1.60m to 1.81m and 1.80m, respectively. Despite
these error increases, POKF-D and POKF-M still outperform
OpenVINS in terms of both relative and absolute pose errors in
Table VI and Table VII, confirming the excellent localization
accuracy of PO-KF.

In summary of the above evaluation results, PO-KF exhibits
the best localization accuracy among the four methods, empha-
sizing the substantial contribution of the proposed base-frame
selection algorithm on its superior localization performance.
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Fig. 19. The result trejectories without ZUPT of the KAIST urban39 data.
The sky-blue rectangles highlight the trajectory drifts of OpenVINS during
the zero-velocity states.

D. Experiments on Robustness

As discussed in Sec.IV-5, the sliding-window and feature
management strategy designed for stationary periods enables
PO-KF to handle potential drift during zero-velocity states
without relying on ZUPT. Furthermore, PO-KF addresses the
necessity of 3D feature position in the measurement equation,
making it easy to correct the state vector for short-tracking
features within a small sliding-window size system. In this
section, we conduct two targeted experiments to showcase
the enhanced localization robustness of PO-KF from the
aforementioned characteristics.

1) Robustness during Zero-Velocity States: Considering the
frequent prolonged stops in the KAIST urban dataset, we
evaluate the localization robustness of PO-KF during zero-
velocity states within this dataset. Specifically, in processing
the KAIST dataset trajectories, we deliberately avoided using
ZUPT in both OpenVINS and PO-KF. For illustration, we
show the result trajectories of the urban39 data in Fig.19.
During zero velocity intervals, the limited parallax of the
tracked features results in invalid measurements to correct the
state vector in the MSCKF-based OpenVINS. This deficiency
leads to noticeable trajectory drifts, highlighted by sky-blue
rectangles in Fig.19. In contrast, the strategy designed for han-
dling zero-velocity states in PO-KF ensures that the historical
tracking data with sufficient parallax is retained. This allows
for the formulation of measurement equations for incoming
visual measurements, enabling PO-KF to maintain a smooth
trajectory even without ZUPT.

For clear comparison and analysis, we calculate and present
the absolute pose errors of trajectories solved by OpenVINS
and PO-KEF, both with and without ZUPT, in Table VIII. Upon
deactivating ZUPT, OpenVINS exhibits a significant increase
in pose errors, with the urban28 data even failing to run.
In contrast, PO-KF maintains a stable localization accuracy
without ZUPT. Moreover, PO-KF without ZUPT even outper-
forms PO-KF with ZUPT in the position accuracy for several
data groups. This phenomenon is attributed to the false zero-
velocity state detection and the inaccurate measurement noise
for ZUPT. Accurately determining the measurement noise for
ZUPT is challenging, as it heavily depends on the IMU’s

16
TABLE VIII
ABSOLUTE POSE ERRORS (DEG/M) WITHOUT ZUPT ON THE KAIST
URBAN DATASET
with ZUPT without ZUPT

Sequence Ty L oAVINS PO-KF OpenVINS PO-KF
urban28  2.88 /2995 2.01/14.40 failed 1.67 / 9.60
urban30 240/ 16.67 2.19/13.16 298/26.04 2.27/12.64
urban32 1.79 / 19.19 1.61 / 9.59 10.2 / 178.7 1.62 / 8.06
urban38  1.86/11.32 144 /842 4.89/82.16 1.58 /1 8.47
wrban39  1.70/ 11.86  1.59/11.63 347 /4562 1.72/13.47

RMS 2.17/719.04 1.79/11.65 - 1.79 / 10.68

precision and the carrier’s stability. Overall, PO-KF not only
sustains localization accuracy during zero-velocity intervals
but also avoids the negative impacts of false zero-velocity
detections and inaccurate ZUPT measurement noise, affirming
the localization robustness of PO-KF under this condition.

2) Robustness with Small Sliding-Window Size: The com-
putational cost in filter-based VIO systems scales cubically
with the size of the sliding-window. However, smaller sliding-
window sizes generally result in shorter baselines, harming the
stability and precision of VIO. In this part, we evaluate the
localization robustness of PO-KF with various small sliding-
window sizes on our robot dataset. Considering the sliding-
window size employed in previous sections is 20 frames,
we systematically assess the performance of PO-KF and
OpenVINS with window sizes of 15, 10, 5, and 3 frames.
The absolute pose errors for different sliding-window sizes
are calculated and summarized in Table IX.

Since every image frame is considered a keyframe within
the sliding-windows of both PO-KF and OpenVINS, the visual
baseline shortens as the sliding-window size decreases, leading
to increased pose error for both filters in Table IX. For
OpenVINS, the noticeable enlargement of the pose error is
caused by the reduction in successful feature triangulation
as the sliding-window size decreases. Numerically, when the
window size is reduced to 15 frames, the position error
in OpenVINS increases by 26% compared to the 20-frame
window. As the size further decreases to 10 frames, the
maximum baseline distance within the sliding-window is only
1.5m, which is notably shorter than the feature depths in the
outdoor scene. This limitation results in half of the data groups
failing to run in OpenVINS with the 10-frame sliding-window.
More critically, reducing the window size to 5 or 3 frames
renders almost all data groups infeasible for OpenVINS due
to extremely limited visual constraints.

In contrast, PO-KF shows a significantly milder increase
in errors compared to OpenVINS as the sliding-window size
decreases. With a 15-frame sliding-window, the position error
of PO-KF increases by only 8% compared to the 20-frame
window. For a 10-frame sliding-window, the position error
increases by 17%. When the sliding-window size is reduced to
5 frames, PO-KF only fails to run on the Robot-B data. This
benefits from the fact that the feature 3D positions are not
required in PO-KF, which ensures its successful operation even
with a 5-frame sliding-window. When facing extreme chal-
lenges with a 3-frame sliding-window, PO-KF also exhibits
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TABLE IX
ABSOLUTE POSE ERRORS (DEG/M) WITH DIFFERENT SLIDING-WINDOW SIZES ON THE ROBOT DATASET

\ OpenVINS \ PO-KF
Sequence

\ 20 frames 15 frames 10 frames 5 frames 3 frames \ 20 frames 15 frames 10 frames 5 frames 3 frames
Robot-A 1.69/3.15 1.54/3.38 failed failed failed 096/171 1.00/1.78 1.05/1.77 127/198 1.18/2.57
Robot-B | 1.45/3.46 1.89/4.26 failed failed failed 0.67 /223 0.70/222 0.87/2.82 failed failed
Robot-C | 0.76 /2.04 093/2.19 1.56/3.48 failed failed 1.05/232 122/243 1.18/245 1.26/380 1.55/5.70
Robot-D | 1.31/1.99 148/2.12 1.35/3.07 failed 1.75/835 | 0.77/1.06 093/143 1.15/198 1.49/2.80 failed
Robot-E | 1.00/2.39 0.94/4.25 failed failed failed 046/151 055/192 053/142 0.79/2.49 failed
Robot-F | 0.87/2.02 1.00/187 1.80/3.17 failed failed 056/1.11 063/130 0.64/131 057/1.74 failed
Robot-G | 0.90/2.32 1.11/3.38 failed failed failed 050/120 053/120 055/149 0.71/202 1.00/2.40
Robot-H | 0.86/1.13 090/1.27 150/2.07 4.02/440 7.08/7.02 | 0.73/1.09 0.74/1.08 0.75/1.05 0.79/120 0.89/2.72

RMS 1.15/241 1.2773.03 - - - 0.74/1.60 0.82/1.73 088/1.87 - -

worsened localization robustness, with half of the trajectories
in this dataset drifting. Nonetheless, under a 3-frame sliding-
window, the successful rate and localization accuracy of PO-
KF are still better than OpenVINS. Generally, PO-KF demon-
strates superior localization accuracy and robustness with a
small-size sliding-window.

E. Experiments on Runtime

We also conduct an experiment to analyze the runtime
performance of PO-KF and the MSCKF-based OpenVINS.
For this analysis, the sliding-window sizes of both systems are
set to 20 frames. Their runtimes are evaluated on a desktop
PC (equipped with an AMD R7950X CPU and 32GB RAM),
using our robot dataset. The average processing times for
one image frame in different data groups are summarized
in Table X. Since OpenVINS and PO-KF share the same
front-end and state equations, their running times for feature
tracking and state propagation are nearly identical. However,
the measurement update in PO-KF takes slightly longer than
in OpenVINS, resulting in a marginal increase of 0.33 ms
in the overall runtime of PO-KF compared to OpenVINS.
Nonetheless, the increase is considerably smaller than the total
running time for one image frame.

TABLE X
AVERAGE RUNTIMES (MS) OF OPENVINS AND PO-KF ON THE ROBOT
DATASET
OpenVINS PO-KF
Sequence Track&Prop. Update  Total = Track&Prop. Update  Total
Robot-A 5.61 1.64 7.26 5.63 1.99 7.61
Robot-B 5.39 1.63 7.03 5.39 1.90 7.29
Robot-C 5.59 1.69 7.27 5.59 1.97 7.56
Robot-D 5.48 1.73 7.21 5.50 2.08 7.58
Robot-E 6.15 1.77 791 6.00 2.05 8.06
Robot-F 6.20 1.62 7.82 6.11 2.01 8.12
Robot-G 7.69 1.86 9.55 7.63 221 9.84
Robot-H 8.13 1.52 9.65 8.17 2.09 10.25
RMS 6.36 1.68 8.04 6.33 2.04 8.37

Track&Prop. denotes feature tracking and state propagation

The detailed running times of main modules in the mea-
surement update process are counted in Table X. This table
also presents visual measurement sizes for runtime analysis. In
Table X, the ‘Model’ category encompasses the running times
for measurement model construction and outlier checking,

including the nullspace projection time for OpenVINS. The
‘KFU. category aggregates the time required for measurement
compression, Kalman filter update, and error-state feedback.
‘Input Meas.” denotes the size of visual measurements input
into the measurement update function, while ‘Updated Meas.’
indicates the size of measurements utilized in the final mea-
surement update equations. Due to some failed triangulations,
the size of updated measurements in OpenVINS reduces
notably compared to PO-KF, coinciding with the analysis
in Sec.V-C. As a result of more visual measurements for
measurement equation construction, the running times for
‘Model’ and ‘KFU. in PO-KF become slightly larger than
those in OpenVINS.

TABLE XI
DETAIL RUNNING TIMES AND VISUAL MEASUREMENT SIZES IN
MEASUREMENT UPDATE ON THE ROBOT DATASET

Running Time [ms

Sequence Method £ Lmsl g/rllput Uﬁdated

Tri. Model KFU. Mo cas.
OpenVINS 007 027 130 110 65
Robot-A - “p0 g - 042 156 111 85
koborg  OPENVINS 007 026 130 106 67
ovo PO-KF - 0.39 1.51 109 82
OpenVINS 007 027 133 110 67
Robot-C— "p0 g S 041 155 111 83
OpenVINS 008 028 136 112 67
RobotD by K S 044 164 115 87
opor.p  OPENVINS 008 030 138 108 67
ovo PO-KF - 0.44 1.61 109 81
OpenVINS 008 027 126 107 63
Robot-F— "p0 g - 042 158 109 82
OpenVINS 009 033 143 109 67
Robot-G by K - 051 169 111 82
OpenVINS 009 027 116 105 58
Robot-H b K - 049 159 107 81
wys  OpenVINS 008 028 132 108 65
PO-KF - 044 159 110 83

Tri. denotes feature triangulation, KFU. denotes Kalman filter update

In summary, the total running time for one image frame
of PO-KF only slightly increases compared to MSCKF-based
OpenVINS. Thus, PO-KF also demonstrates good real-time
performance similar to the proven efficiency of OpenVINS.

VIII. CONCLUSION

propose PO-KF, a
filter for

In this paper, we
representation-based  Kalman

pose-only
visual-inertial
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odometry, along with an information matrix-derived base-
frame selection algorithm. Benefiting from the pose-only
representation, PO-KF explicitly eliminates feature 3D
positions from the measurement equation. This enables
PO-KF to efficiently address the challenges present in
MSCKF-based VIO, including linearization errors on feature
3D positions and delayed visual measurement updates.
Moreover, our proposed base-frame selection algorithm
efficiently identifies the most suitable two base-frames for
each feature point, ensuring a pose-only measurement model
with the optimal constraints on camera poses.

Comprehensive analysis and extensive experiments across
three diverse datasets demonstrate the superior localization
accuracy of PO-KF compared to SOTA VIO systems, in-
cluding the optimization-based VINS-Mono, IC-VINS, and
the MSCKF-based OpenVINS. Specifically, PO-KF achieves
significantly enhanced localization performance relative to
OpenVINS, reducing the relative rotation error and position
error over a 100m trajectory by 52% and 38%, respectively.
Additionally, our results validate the effectiveness of the
proposed base-frame selection algorithm. Furthermore, dedi-
cated experiments highlight the exceptional robustness of PO-
KF under challenging conditions, while achieving real-time
performance comparable to OpenVINS.

Commonly used keyframe strategies in VIO are designed to
increase the baseline for long-tracking features within a fixed
sliding-window size, wasting the valid measurements from
short-tracking features. Future work will focus on developing a
dynamic keyframe strategy for PO-KF that maintains a fixed
sliding-window size while ensuring a sufficient baseline for
long-tracking features and efficiently utilizing all measure-
ments from short-tracking features.
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APPENDIX A
JACOBIAN OF FEATURE DEPTH TO CAMERA POSES

As derived in Eq.(20), the feature depth in c;-frame that
represented with the ¢-th and j-th camera poses is denoted as:

¢ - Uj:| ij'
(i,4) & /\f _ | [mf X Pe;
dyi’ = . ", P— (38)
W) [=] ey
where, the /\;j and 6; ; are calculated as follows:
N9 =/a=VATA, A=—|2Y| pY
! IV (39)

0;; =Vb=VB"B,

_ U Cj Ui.
B = [mfj}x R xy

Based on the algebraic relations, part of the Jacobians can
be calculated as follows:

1

df.i 1 A T
Jyi = JN = JY =2A
A0y AV 4 “0)
Cj .
Jori = A Bisi b Jb =2BT
i, 2 9
05 2v/b

Performing error disturbance on the expressions of A and
B, we obtain their Jacobian matrices with respect to the i-th
and j-th camera poses as follows:

sy <[00 =[] RV,

Jﬁwj - {_ [wuj]x { ZZ]X [wl}]]x RWJ} ’ (41)
st =[] m e, o]

sz, =[], [ray], o]

Then we obtain the Jacobian matrices of the feature depth to
the two base-frames based on the chain rule, as shown below:

dy,i

_ 745 A5 70 TA dyi 7955 7b 1B
T =IO TN TG T T TR

dy i d

. (42)
g :Jii”ijJ‘AJﬁv; +J,

fi gbii b 7B
T TR

APPENDIX B
JACOBIAN OF THE DISTORTION AND PROJECTION
FUNCTIONS

For a camera with the pin-hole projection model and the
rad-tan distortion model, the distortion and projection process
are expressed as:

o g =iy +2p1a Yy + pe (r2 + 2(x3'})2)

Yia =YE Y+ 2p2 Yy + (r2 + 2(pjcﬁy)2>’

_ u _ w
uPt _fa:xf’d +eg, V= fyyﬁd + ¢y

(43)

2 2
x‘}l) + (y}l) sy = (L4 kir? + kort). fa,
fy» ¢, and ¢, are the projection parameters of the camera,
while k1, ko, p1, and po are the distortion parameters.

According to the algebraic relations in Eq.(43), we derive
the Jacobian matrices of the distortion and projection functions
as follows:

a:ul py 1 0
fo},d _ |:Cl Cz] ’ Jlr = [18 1 ]7 (44)

where, 72 = (

o
€1 €2 Td 7,

where, the expressions of ¢, ca, e1, and e, are as below:

2 2
o=y +2(p,) k4t () ke 20,0+ 60 2
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er =297 P ky + 407D 0 ke + 297 2 + 20 o1
2 2
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