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SC-EKF-MIO: Magnetic-Inertial Odometry Based
on Stochastic Clone Extended Kalman Filter

Jiazhu Li , Jian Kuang , Yan Wang , and Xiaoji Niu , Member, IEEE

Abstract—Odometry is a critical technology for autonomous
navigation and localization, whether for pedestrians or other
mobile platforms. However, existing odometry solutions rarely
deliver high accuracy, low cost, and strong robustness all at once.
In this article, we propose a magnetic-inertial odometry (MIO)
method based on a magnetometer array and inertial sensors.
Our approach first establishes the relationship between the
platform’s relative pose changes and a local magnetic-field model,
then employs a stochastic clone extended Kalman filter (SC-
EKF) to fuse magnetic and inertial measurements for continuous
correction of the inertial navigation system (INS). Furthermore,
we introduce magnetic-vector constraints to address the unob-
servability of absolute heading and reduce position drift errors.
In typical indoor environments, such as offices and underground
parking lots, our method achieves an average horizontal position
RMSE of 2.5 m and a velocity estimation accuracy of up to
0.07 m/s. On publicly available datasets used by the latest state-
of-the-art methods, it yields a position accuracy improvement of
about 60% and velocity accuracy improvement of about 38%.

Index Terms—Indoor positioning, magnetic-field-based local-
ization, magnetometer array, MEMS-inertial measurement unit
(IMU), odometry, stochastic clone extended Kalman filter (SC-
EKF).

NOMENCLATURE

bi Body frame at the current time instant.
b j Body frame at the previous time instant.
r Position vector from the origin of the

magnetic-field model to an arbitrary point
in space.

µ Coefficient vector of the magnetic-field
polynomial model.

θ Magnetic-field model parameter vector
after eliminating redundant parameters.

Φ Coefficient matrix constructed from spa-
tial terms r.
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lbi Coordinate vector of the magnetometer in
the bi frame.

Mbi Observation vector of the magnetometer
array in the bi frame.

M̂bi

j Predicted magnetic field at the previous
time instant based on the magnetic-field
model.

Ci
j Relative rotation matrix between the bi

and b j frames.
∆rbi Position variation vector in the bi frame.
∆t Time interval for IMU propagation.
dt Time interval between two magnetic array

updates.
nv Observation noise of the magnetometer

array.
nm Magnetometer measurement noise.
Cb

n Rotation matrix from the navigation frame
to the body frame.

I. INTRODUCTION

RELIABLE navigation and positioning under degraded
or denied GNSS conditions has garnered increasing

attention among researchers. A central challenge is achieving
stable, autonomous localization, i.e., enabling the platform
to determine its position and orientation over time without
relying on external aids [1]. Dead reckoning (DR) estimates
the current position by propagating a known starting position
using velocity and heading measurements over time. An
inertial navigation system (INS) employs an inertial mea-
surement unit (IMU) to continuously measure acceleration
and rotation rates [2]. By integrating these measurements, the
INS performs a form of DR to provide continuous position,
velocity, and attitude estimates. This allows INS to maintain
short-term localization when GNSS signals are unavailable
or jammed. However, consumer-grade devices typically use
low-cost MEMS-IMUs, which exhibit limited accuracy and
rapid error growth under conventional strap-down algorithms.
Therefore, enhancing MEMS-IMU usability and reliability
in DR requires high-precision, robustness-enhanced odom-
etry information to constrain and mitigate inertial error
growth.

Existing odometry approaches include inertial, wheel,
visual, and LiDAR-based methods [1]. Each modality risks
degraded performance under certain operational conditions. As
mentioned above, Inertial odometry suffers from positioning
drift caused by sensor bias accumulation and noise, leading to
progressive error growth [3]; wheel odometry is vulnerable to
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wheel slippage and terrain irregularities, which introduce non-
holonomic constraint violations in motion estimation; visual
odometry is highly sensitive to illumination changes and
dynamic occlusions, often failing in low-texture environments
[4]; and LiDAR odometry is costly, computationally inten-
sive, and degrades in environments with weak geometric
features [5].

Many published studies have discussed the shortcomings
of visual odometry and SLAM methods in dynamic envi-
ronments from various perspectives [6], [7], [8], [9]. For
example, Xue et al. [6] presents an NGIG-based adaptive
Kalman filtering framework to handle the mismatch between a
fixed measurement noise covariance matrix (MNCM) and the
actual measurement noise. The tightly coupled visual–inertial
SLAM system in [7] does not simply remove dynamic
objects; instead, it extracts feature points on moving objects
and uses them as constraints to improve localization accu-
racy. Zhang et al. [8] builds on ORB-SLAM3 by adding
a parallel moving-probability propagation thread that esti-
mates, for each feature point, the probability of being static
or dynamic, and then selects or weights feature points
according to these probabilities to avoid erroneous matches.
Zhang et al. [9] replaces the conventional ORB/BRIEF
pipeline with lightweight deep feature extraction, fast dynamic
object association, and an online binary BoW loop-closure
detector, thereby improving self-localization and dynamic
object tracking in high-speed and low-texture scenarios.
Although these advances yield improvements under specific
conditions, feature-point-based methods remain intrinsically
susceptible to extreme environmental disturbances, which
impede accurate and robust localization in entirely unknown
environments. No existing odometry method achieves optimal
precision, cost-effectiveness, and robustness simultaneously.
In contrast, magnetic-field odometry provides a lightweight
velocity estimate based on relatively stable magnetic sig-
nals and does not depend on a preconstructed magnetic-field
map. It utilizes measurements from a magnetometer array
to provide odometric information such as position or veloc-
ity [10]. While not intended to replace visual or LiDAR
SLAM in their primary domains, it can serve as a use-
ful auxiliary or backup solution in specific scenarios. For
example, in indoor areas with significant magnetic-field
signatures or where optical and range sensors temporar-
ily lose tracking, magnetic-field odometry is desired to
enhance the overall robustness of a multisensor navigation
system.

Due to ferromagnetic interference, indoor magnetic fields
exhibit long-term stability and spatial distinctiveness, making
them a reliable positioning source. Vissiére et al. [11], [12]
pioneered the use of indoor magnetic-field disturbances
to improve IMU-based position and velocity estimation.
Vissiére et al. derived equations relating magnetic-field
gradients to user velocity and employed a distributed
magnetometer array for velocity estimation. Subsequent
studies expanded on this work [13], [14], [15]. Dorveaux
[14] addressed moving rigid-body localization by integrating
magnetic disturbances with IMU measurements, establishing
the magnetic-inertial navigation (MINAV) framework.

Chesneau et al. [15] integrated inertial sensor and
multimagnetometer measurements, developing an extended
Kalman filter (EKF) for data fusion. Fan et al. [16], [17]
introduced a Monte Carlo-based baseline optimization
for scalar magnetometer arrays, enhancing localization
accuracy by maximizing signal-to-noise ratio through
cross-structured array design. Zmitri et al. [18] derived
higher-order differential equations of magnetic fields to
mitigate noise in gradient measurements, using a distributed
magnetometer array to monitor both fields and their spatial
derivatives. Recent studies have applied a polynomial model
to characterize local magnetic fields [19]. Further analysis
of this model-based methodology is presented in [20]. They
augmented the magnetic-field model parameters into the INS
error-state vector to facilitate Kalman filter prediction and
update processes. Detailed derivations and analyses were
subsequently documented in [10], accompanied by real-world
data collection to evaluate algorithm performance. The
corresponding experimental datasets and implementation code
were also made publicly available. These approaches rely
heavily on precise estimation or matching of magnetic-field
gradients. However, gradient computation and higher-order
differentiation are highly susceptible to measurement noise.
More critically, they fail to address the unobservability of
absolute heading. In current state-of-the-art ESKF frameworks,
the inclusion of a magnetic-field model introduces substantial
errors when the model order is insufficient to capture
field complexity; conversely, adopting higher-order models
increases the state vector dimension, which is detrimental to
filter performance.

Recently, a dual-magnetometer velocity estimation algo-
rithm was implemented for robotic speed determination
[21], employing waveform matching between paired vehicle-
mounted magnetometers to compute forward velocity. Experi-
mental results indicate that the approach in [21] matches wheel
odometry performance in magnetically rich environments.
Building on this concept, Liu et al. [22] deployed a dual-
magnetometer velocity measurement system on pedestrian
helmets and incorporated postural changes into the wave-
form similarity analysis. However, these methods rely on
magnetometers mounted at the front and rear, making them
suitable only for forward motion and not lateral movement.
Moreover, because forward velocity is calculated by matching
measurements from the front and rear magnetometers, the
approach is highly sensitive to the lever arm’s projection onto
the horizontal plane.

To overcome the limitations of existing methods, this arti-
cle presents a magnetic-inertial odometry (MIO) approach
based on a magnetometer array and inertial sensors. We
begin with the local magnetic-field model derived in [10]
from the field’s divergence-free and curl-free properties
to establish the relationship between the platform’s posi-
tion and orientation changes and the model. For enhanced
robustness, we employ a stochastic clone EKF (SC-EKF)
to fuse magnetometer-array measurements with inertial
data. In addition, the algorithm incorporates a magnetic-
vector constraint to address the unobservability of absolute
heading.
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The remainder of this article is structured as follows.
Section II derives the local magnetic-field model. Section III
details the filtering algorithm for data fusion. Section IV
analyzes algorithm performance using both public and propri-
etary datasets, and examines the impact of varying magnetic
gradient intensities. Finally, Section V concludes this article
and proposes directions for future work.

II. MAGNETIC-FIELD RELATED MODEL CONSTRUCTION

Given that this article involves numerous coordinate trans-
formations, the primary variables and coordinate systems are
summarized in Nomenclature for clarity.

A. Local Magnetic-Field Modeling

Local magnetic-field modeling refers to the mathematical
fitting and parameterization of the magnetic-field distribution
within a bounded spatial region. Under the assumptions that
there are no free electric charges in the space and that external
magnetic interference sources are sufficiently distant, the local
magnetic-field model satisfies the physical conditions of being
both curl-free and divergence-free. Letting M(r,µ) denote the
local magnetic-field model, the following conditions hold [10]:

∇r × M (r,µ) = 0 (1)
∇r · M (r,µ) = 0. (2)

Here, r = [x, y, z]> denotes the position vector from the origin
of the local magnetic-field model to an arbitrary point in space.
The vector µ represents the coefficients of the magnetic-field
polynomial model, with its dimensionality determined by the
order l of the polynomial. Huang et al. [10], a scalar magnetic
potential function was introduced and expanded as an lth order
polynomial at position r. By eliminating redundant parameters,
an explicit linear parametric model for the magnetic field is
ultimately obtained

M (r, θ) = Φ (r) θ. (3)

Here, θ represents the coefficient vector of the local magnetic-
field model, and its dimension is determined by the model
order l, i.e., dim(θ) = l2 + 4l + 3. The matrix Φ(r) denotes the
coefficient matrix constructed from spatial terms. For example,
in the case of a first-order magnetic-field model, Φ(r) can be
expressed as

Φ (r) =

241 0 0 y z 0 2x 0
0 1 0 x 0 z 0 2y
0 0 1 0 x y −2z −2z

35 . (4)

The local magnetic-field model equation shown in (3)
applies to any coordinate system.

B. Magnetic-Field–Pose Relationship Modeling

To establish the relationship between magnetic-field vari-
ation and relative pose change, it is essential to examine
the relationship between magnetic-field vectors measured
at the same spatial location across two consecutive time steps.
The magnetic-field vectors in the body frame (b-frame) at two
consecutive time instants satisfy the following relationship:

Mb j
�
lb j , θ j

�
= Cb j

bi
Mbi

�
lbi , θi

�
(5)

Φ
�
lb j
�
θ j = Cb j

bi
Φ
�
lbi
�
θi (6)

lbi =
�

r1 r2 r3 r4 r5
�> (7)

where bi and b j denote the body frame at the current and
previous time instants, respectively. Fig. 1 illustrates the geo-
metric relationship between the body frames (bi and b j) at
two consecutive time instants. lbi denotes the coordinates of
magnetometers in the bi-frame. These coordinates are defined
as the positions of each magnetometer relative to the origin
of a chosen body frame. Since the magnetometers are rigidly
mounted with respect to each other, their coordinates remain
constant in the bi-frame. The complete construction of Φ(lbi )
is defined as follows:

Φ
�
lbi
�

=

266664
Φ (r1)
Φ (r2)
Φ (r3)
Φ (r4)
Φ (r5)

377775 . (8)

The parameters θ̂ of the magnetic-field model can be
estimated via least squares using observations from the mag-
netometer array and (3)

θ̂ =
�
Φ>

�
lbi
i

�
Φ
�

lbi
i

��−1
Φ
�

lbi
i

�>
Mbi . (9)

Here Mbi represents the observation vector of magnetometer
array, and Φ(lbi

i ) is the coefficient matrix constructed from
the coordinate vector lbi

i following (4) and (8). From the
construction of the matrix Φ, it can be seen that a neces-
sary condition for Φ>(lbi

i )Φ(lbi
i ) to be invertible is having at

least three coordinates ri, such that the nine scalar equations
generated by these coordinates render the eight columns of Φ

linearly independent. In this work, this condition is ensured
by appropriately arranging the geometric configuration of the
magnetometer array. The estimation covariance matrix for the
local magnetic-field model parameters θ̂ is

Covθ̂ = σ2 �Φ>Φ
�−1 (10)

where σ2 is estimated by calculating the sum of squares of
model residuals.

Subsequently, the local magnetic-field parameters θ̂ are
utilized to predict the magnetic-field observation M̂bi

j at the
previous time step. We assume that the parameters of the
magnetic-field model do not change significantly between two
adjacent moments

M̂bi

j = Φ
�

lbi
j

�
θ̂ (11)

where lbi
j denotes the coordinates of magnetometers in the

bi-frame at the previous time. Since the magnetometers are
rigidly mounted on the platform assembly, the coordinate
relationship lb j

j = lbi
i . The relative motion of the platform

between two time instances, including both translational and
rotational components, can be formulated as follows:

lbi
j = Ci

j l
b j
j + ∆rbi (12)

Ci
j = Cbi

n Cn
b j

(13)

∆rbi = Cbi
n ∆rn

i = Cbi
n

�
rn

j − rn
i

�
(14)
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Fig. 1. 2-D illustration of the geometric relationship between the body frames
at two consecutive times.

where Ci
j represents the relative rotation between the bi-

frame and b j-frame at consecutive time steps, ∆rbi denotes
the position variation in the b-frame. Synthesizing (5), (6),
and (11)∼(14) yields the predicted magnetic-field value M̂b j

j
from the previous time step

M̂b j

j = C j
i Φ
�

Ci
j l

b j
j + Cbi

n

�
rn

j − rn
i

��
θ̂. (15)

Equation (15) encodes the principle that, within a suffi-
ciently small spatiotemporal neighborhood, the local magnetic-
field parameters θ remain constant. Within the model’s
effective domain, we attribute observed magnetic fluctuations
to changes in the platform’s pose. By collecting magnetic-field
observations within this domain, we then employ perturbation
analysis to derive relationships between variations in the
magnetic gradient and changes in the platform’s pose. These
relationships yield constraint terms derived from observations,
which we integrate into the filtering framework to improve
state-estimation accuracy.

III. MAGNETOMETER ARRAY CONSTRAINT
BASED ON SC-EKF

The data fusion algorithm proposed in this article is based
on the concept of inertial mechanization combined with pose
correction using a magnetic-field model. While the INS mech-
anization propagates the navigation solution, discrepancies
between magnetometer-array measurements and magnetic-
field model predictions are used to generate pose constraints.
To correctly fuse the high-frequency propagation information
from INS with the relative pose measurements observed by the
magnetometer array, a SC-EKF is employed as the filtering
framework.

This section presents an overview of the proposed data
fusion algorithm. Fig. 2 presents the algorithm’s flowchart.
First, strap-down inertial navigation mechanization is exe-
cuted to determine the carrier’s current position, velocity,
and attitude. Next, magnetic array measurements are used to
estimate the parameters of the local magnetic-field model. Sub-
sequently, historical state information is employed to compute
relative pose changes between successive epochs and to predict
the corresponding magnetic-field models. These predictions

Fig. 2. Algorithm flowchart of SC-EKF-MIO.

are then combined with magnetic array measurements from
adjacent epochs to formulate updated constraints. Finally, the
SC-EKF is applied to fuse magnetic-field model variations
with the propagated states from inertial integration. In Addi-
tion, the algorithm incorporates magnetic-vector constraints in
the navigation frame to improve heading angle estimation.

A. Inertial Navigation Algorithm

The INS Mechanization algorithm is based on the idea
that the current position, velocity, and attitude of a moving
object can be obtained by integrating acceleration twice and
angular rate once, given the initial navigation state. In this
article, a low-cost MEMS-IMU is employed for mechaniza-
tion, allowing minor corrections (e.g., Earth rotation effects) to
be neglected. The simplified mechanization in the navigation
frame (n-frame) is expressed as follows [23]:24 rn

k
vn

k
Cn

b,k

35 =

26664
rn

k−1 + vn
k∆t

vn
k−1 +

h
Cn

b,k

�
f̃ b

k − ba

�
+ gn

i
∆t

Cn
b,k−1 + Cn

b,k−1

��
ω̃b

k − bg
�
×
�

∆t

37775 (16)

where rn and vn represent the position vector and the velocity
vector in the n-frame respectively, Cn

b represents the transfor-
mation matrix from the b-frame to the n-frame, gn represents
the Earth gravity vector in the n-frame, f̃ b

k and ω̃b
k represent the

acceleration measurement vector and angle rate measurement
in the b-frame, respectively. ba and bg represent the bias of
the accelerometer and gyroscope, respectively. ∆t = tk − tk−1
represents the time interval between the kth and (k−1)th epoch.

B. Stochastic Clone EKF

In the proposed method, an SC-EKF is employed to fuse rel-
ative pose change observations provided by the magnetometer
array, thereby reducing the accumulation of errors in the INS.
Meanwhile, the incremental variation of the magnetic-field
vector is used to enhance the estimation of the heading angle,
which further improves the accuracy of position estimation.

SC-EKF is principally intended to remedy the classical
Kalman filter’s inability to properly handle the cross-
covariances that arise between the current state and previous
states. When an observation depends on both previous and
current states, retaining “clones” of previous states in the
filter state vector and explicitly computing the associated cross
terms is beneficial. This allows relative measurements to be
incorporated into the Kalman update in an optimal way under
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first-order linearization. This leads to more consistent and
more accurate estimates [24]. The measurements employed
by the proposed algorithm intrinsically represent relative pose
changes inferred from gradients of the local magnetic field;
they are therefore relative observations with temporal corre-
lation. Adopting SC-EKF enables more effective use of these
observations while accurately estimating the system state.

To fuse both magnetometer observations and magnetic-field
measurements in the navigation frame, the proposed method
incorporates the concept of stochastic cloning into the error-
state Kalman filter (ESKF) framework, resulting in an indirect
SC-EKF approach. At time k, the (15 + 3 × m)-dimensional
error-state variables are defined as

δxk =
�

sk ηk

�> (17)

where

ηk =
�
δrn

k−m δrn
k−m+1 · · · δrn

k−1

�> (18)

sk =
�
δrn

k δvn
k φk δbg,k δba,k

�> (19)

where δrn, δvn, and φ represent the error vectors of position,
velocity, and attitude in the n-frame, respectively. δbg and δba

represent the error vectors for gyroscope and accelerometer
biases, respectively. k denotes the epoch index, m specifies
the number of historical states retained in the sliding window,
and δrn

k−m and δrn
k−1 represent the position error vectors of the

historical states. The discretized and linearized system error
model can be formulated as follows:(

δxk|k−1 = Φk−1δxk−1|k−1 + wk

δzk = Hkδxk|k−1 + nk
(20)

where the subscripts k−1 and k represent the epoch, δxk−1|k−1
and δxk|k−1 represent the previous and predicted error-state vec-
tors, respectively. δzk represents the measurement misclosure
vector, Hk is the observation matrix, wk and nk are the process
noise and measurement noise, respectively. The state transition
matrix Φk is expressed as follows:

Φk,15×15 =

266664
I3 I3∆t 03 03 03

03 I3
�

f n
k×
�

∆t 03 Cn
b,k∆t

03 03 I3 − Cn
b,k∆t 03

03 03 03 I3 03
03 03 03 03 I3

377775 (21)

Φk =

�
Φk,15×15 015×3m

03m×15 I3m×3m

�
. (22)

In the SC-EKF framework, cloned states(augmented histori-
cal states) do not require updates during the propagation phase.
After state propagation, the covariance propagation formula is
expressed as

Pk,k−1 = Φk−1 Pk−1Φ>k−1 + Qk (23)

where Pk−1 denotes the initial state covariance matrix, Qk
denotes the process noise covariance matrix for state predic-
tion.

When valid observations are acquired, the following formula
can be applied to update the state vector and its associated
covariance matrix:

δxk = δxk,k−1 + Kk
�
δzk − Hk xk,k−1

�
(24)

Pk = (I − Kk Hk) Pk,k−1(I − Kk Hk)> + Kk Rk K>k (25)

Kk = Pk,k−1H>k
�
Hk Pk,k−1H>k + Rk

�−1
. (26)

It is noteworthy that after the SC-EKF completes the state
vector update, a block permutation of the current covariance
matrix Pk must be performed. This step aims to manage the
m historical cloned states in the sliding window and ensure
structural consistency between the covariance matrix and the
state vector. The probability propagation of the stochastic
clone step in the proposed system is defined as

Pnew
k =

�
I15 015×(3m)

A

�
Pk

�
I15 015×(3m)

A

�>
(27)

A =

�
03(m−1)×3 03(m−1)×15 I3(m−1)×3(m−1)

I3 03×15 03×3(m−1)

�
(28)

where the rows and columns of A are (3m) and (15 + 3m).
To better illustrate the mechanism of stochastic cloning

adopted in this study, Fig. 3 presents a schematic of the
sliding-window update process. The sliding window maintains
m historical states, each storing the corresponding position.
Simultaneously, the position error is augmented into the error-
state vector, as shown in (17) and (18). After the filtering
update at time step k, the current navigation state is com-
pensated, and the positions are cloned as a new state. This
newly cloned state is then inserted into the sliding window,
while the oldest (i.e., the mth) clone is marginalized. During
the compensation phase, all stored positions within the sliding
window are also updated to maintain consistency in the state
estimation.

C. Magnetometer Array Constraint Update

In Section II-B, we have established the relationship
between the local magnetic-field model and the platform’s
position and orientation changes, as shown in (15). The next
step is to perform perturbation analysis in order to further
derive the relationship between the magnetic-field model and
the error-state variables of interest. Perturbation analysis of the
(15) can be expressed as follows:

M̂b j

j = Ĉ j
i Φ̂
�

lbi
j

�
θ

=
�

C j
i +

��
δbgdt + ηω

�
×
�� �

Φ
�

lbi
j

�
θ + B (θ) δlbi

j

�
≈ C j

i Φ
�

lbi
j

�
θ+C j

i B (θ) δlbi
j +
��
δbgdt + ηω

�
×
�

Φ
�

lbi
j

�
θ

= Mb j
j + C j

i B (θ) δlbi
j −

h
Mbi

j ×
i
δbgdt −

h
Mbi

j ×
i
ηω

(29)

where dt denotes the time interval between two consecutive
magnetometer array update steps. The parameter θ in the
equation is estimated using the least-squares method based
on the measurements from all magnetometers at the time step
i, as described in (9). ηω ∼ N (0, qωdtI3), denotes the angular
error noise vector generated by integrating the gyroscope mea-
surement noise. Since the gyroscope measurement noise does
not alter the structure of the Jacobian matrix in the observation
equation but rather appears as an additional observation noise
term, this component is omitted in the subsequent derivation
of the relative attitude. It is explicitly included in the final
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Fig. 3. Illustration of sliding-window update for stochastic cloning.

observation noise matrix. Taking the first-order magnetic-field
model as an example, B(θ) is formulated as

B (θ) =

24 2θ4 θ6 θ7
θ6 2θ5 θ8
θ7 θ8 −2 (θ4 + θ5)

35 . (30)

Perturbation analysis of lbi
j can be expressed as follows:

l̂bi

j = Ĉi
j l

b j
j + Ĉbi

n ∆r̂n

=
�
Ci

j −
�
δbgdt×

��
lb j

j +
�
I − φ×

�
Cbi

n

�
r̂n

j − r̂n
i

�
= lbi

j + Cbi
n δrn

j − Cbi
n δrn

i +
h

lb j
j ×
i
δbgdt +

�
∆rbi×

�
φ

δlbi
j = Cbi

n δrn
j − Cbi

n δrn
i +

h
lb j

j ×
i
δbgdt +

�
∆rbi×

�
φ. (31)

By combining the above two equations, the error perturbation
equation of the magnetic-field model with respect to the error-
state variables can be obtained

M̂b j

j = Mb j
j + C j

i B (θ) δlbi
j −

h
Mbi

j ×
i
δbgdt

= Mb j
j + C j

i B (θ) Cbi
n δrn

j − C j
i B (θ) Cbi

n δrn
i

+
�

C j
i B (θ)

h
lb j

j ×
i
−

h
Mbi

j ×
i�
δbgdt

+ C j
i B (θ)

�
∆rbi×

�
φ. (32)

For the magnetic field from the previous epoch, the corre-
sponding observations can be obtained via magnetometer array
measurements as follows:

M̃b j
j = Mb j

j + nv (33)

where nv denotes the observation noise. By combining (32)
and (33), the measurement model in the error-state Kalman
filter framework can be expressed as

δzMA = M̂b j

j − M̃b j
j

= C j
i B (θ) Cbi

n δrn
j − C j

i B (θ) Cbi
n δrn

i

+
�

C j
i B (θ)

h
lb j

j ×
i
−

h
Mbi

j ×
i�
δbgdt

+ C j
i B (θ)

�
∆rbi×

�
φ+ nv. (34)

As derived in Section II, the observation equation (34)
utilizing magnetometer array measurements for the filter’s
measurement update has been established. Therefore, the
design matrix can be formulated as

Hmag =
�
−H11 03 H13 H14 03 03 . . . H11

�
. (35)

The submatrix in Hmag is defined as8̂̂<̂
:̂

H11 = C j
i B (θ) Cbi

n

H13 = C j
i B (θ)

�
∆rbi×

�
H14 =

�
C j

i B (θ)
h

lb j
j ×
i
−

h
Mbi

j ×
i�

dt.
(36)

Since δzmag contains the measurement noise and estimation
error of the magnetic-field model parameters, as well as
the gyroscope measurement noise, the observation covariance
matrix should therefore consist of the following components:

Rmeas =
�

C j
i Φ
�

lbi
j

��
Covθ̂

�
C j

i Φ
�

lbi
j

��>
+ diag

�
σ2

mag

�
+
h

Mbi
j ×
i �

qωdtI3
� h

Mbi
j ×
i>
. (37)

Here σ2
mag denotes the standard deviation of the magnetometer

array measurement noise.

D. Magnetic-Vector Constraint Update

Previous studies [25] have shown a mismatch between
estimated state covariance and actual system uncertainty in
EKF-based odometry-aided INS implementations. Likewise,
in magnetometer array–aided INS scenarios, the heading angle
becomes unobservable due to the absence of absolute head-
ing References. However, the EKF’s Jacobian linearization
introduces higher-order truncation errors, resulting in spurious
observability of inherently unobservable states within the
covariance matrix. This effect artificially inflates the filter’s
confidence in heading error estimates, potentially causing filter
divergence.

To address heading unobservability, we introduce a
magnetic-vector constraint in the navigation frame. This con-
straint update constructs the measurement by utilizing the
difference of the magnetic-field vectors in the navigation frame
between adjacent time instants.

Magnetometers are capable of measuring the magnetic-field
intensity along the sensor’s X-, Y-, and Z-axes. In low-cost
magnetometer applications, the effects of scale factor and
nonorthogonality errors are generally considered secondary
compared to bias and random noise. Therefore, the magne-
tometer measurement can be modeled as follows [26]:

M̃b
= Cb

n

�
Mn

G + Mn
I

�
+ bm + nm (38)

where Mn
G and Mn

I are the geomagnetic-field and magnetic-
field interference in the n-frame, respectively. M̃b and bm are
the measurement and bias of magnetometer, respectively. Cb

n
is the transformation matrix from the n-frame to the b-frame.
nm is the measurement noise. The geomagnetic field at time
k can be expressed as follows:

Mn
G,k = Cn

b,k

�
M̃b

k − bm,k

�
+ Mn

I,k + Cn
b,k nm. (39)

Kuang et al. [27] analyzed the magnetic-field vectors
observed in typical indoor environments and found that the
difference in the magnetic-field vector can significantly reduce
the influence of magnetic interference. Based on this obser-
vation, it is reasonable to assume that magnetic interference
is approximately uniform within a small local area. In other
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Fig. 4. Sensor array platform.

words, the magnetic-field vectors at any two time instants
within a small region satisfy the following relationship:

0 ≈ Mn
G,i − Mn

G, j (40)

0 ≈ Cn
b,i

�
M̃b

i − bm,i

�
− Cn

b, j

�
M̃b

j − bm, j

�
. (41)

Within a short time interval, the magnetometer bias bm can be
regarded as constant. Furthermore, assuming that the attitude
and attitude error remain unchanged between adjacent time
steps, the above equation simplifies to

0 ≈ Cn
b M̃b

i − Cn
b M̃b

j . (42)

The perturbation analysis of (42) can be expressed as follows:

δzMV = Ĉn
b M̃b

i − Ĉn
b M̃b

j

=
�
I − φ×

�
Cn

b M̃b
i −

�
I − φ×

�
Cn

b M̃b
j

= M̃n
i − M̃n

j +
��

M̃n
i − M̃n

j

�
×
�
φ (43)

where Mb
i denotes the magnetic-field vector in the body frame

at the current epoch; Mb
j denotes the magnetic-field vector in

the b-frame at the previous epoch; Cn
b represents the rotation

matrix transforming vectors from the b-frame to the navigation
frame. The corresponding design matrix is expressed as

Hatt =
�

03 03
��

M̃n
i − M̃n

j

�
×
�

03 . . . 03
�
. (44)

IV. EXPERIMENTAL RESULTS

A. Test Description

To validate the effectiveness of the proposed method, a
sensor array platform was constructed, as illustrated in Fig. 4.
The platform consists of five HWT-9073 nine-axis sensor
modules developed by WitMotion, a Livox Mid-360 LiDAR,
and a data logging terminal (not shown in the figure). Each
HWT-9073 module integrates a tri-axis accelerometer, a tri-
axis gyroscope, and a tri-axis magnetometer. The inertial
sensor in each module exhibits a typical bias instability of
60 deg/h and 25 mg, a white noise density of 0.03 deg/

√
h

and 0.06 m/s/
√

h. The magnetometers feature a noise level of
0.1 µT and a resolution of 13 nT.

The sensor configuration shown in Fig. 4 adopts a pyramidal
arrangement: four modules are placed at the vertices of a
20 × 20 cm square, and the fifth module is mounted 10 cm
directly above the square’s center. The primary reason for
selecting this magnetometer array configuration is to enable
a more comprehensive perception of the spatial magnetic-
field gradient. Based on this consideration, a pyramid-shaped

Fig. 5. Data acquisition environment. (a) Scenario a. (b) Scenario b.
(c) Scenario c.

or cross-shaped geometric structure is particularly suitable.
[28] provides a detailed analysis of the positioning accuracy
achieved with the same number of magnetometers under
different geometric configurations, showing that 3-D structures
exhibit the most robust performance in 3-D motion scenar-
ios. Furthermore, distributing the magnetometers uniformly
in space helps prevent structural degeneracy under extreme
conditions, such as collinearity among sensors, which would
cause the matrix Φ to become singular.

Magnetometers are prone to interference from onboard
or environmental magnetic disturbances, particularly soft-iron
effects, which can cause misalignment between the magne-
tometer and inertial sensor frames. Therefore, magnetometer
calibration and alignment with inertial sensors are necessary
before using the magnetometer array for data collection. In the
data preprocessing stage of this experiment, a Kalman filter-
based magnetometer calibration and alignment algorithm from
[26] was applied to ensure measurement accuracy.

The experiments were conducted in three representative
indoor environments, as shown in Fig. 5: Scenario a, an office
building lobby; Scenario b, an underground parking garage;
and Scenario c, an indoor corridor. For the experiments, a
pedestrian acted as the carrier of the MIO system. Data
acquisition proceeded as follows: the platform was first placed
stationary on the floor for a brief initialization period; then the
operator held the platform in both hands and walked along a
predefined route, ceasing data collection after completing the
trajectory segment. During data processing, we evaluated two
localization schemes: 1) MAINS: the method proposed in [10]
and 2) SC-EKF-MIO: the Livox Mid-360 LiDAR is employed
to capture point cloud data during the experiment. It is
paired with the Fast-LIO2 [29] algorithm to compute reference
trajectories for indoor motion. The relative position error of
this LiDAR-inertial fusion system is approximately 0.5% of
the total traveled distance. This trajectory serves as the ground
truth for evaluating the positioning and orientation accuracy
of the proposed method. Time synchronization between the
sensors, as well as between the sensors and the reference
system, is achieved by simultaneous data acquisition over the
serial port. Because all comparisons pertain to relative posi-
tioning performance, the initial segment of each test trajectory
was aligned with the corresponding portion of the reference
trajectory to ensure a fair assessment.

B. Test Results on Dataset

In this section, the ten collected datasets are processed and
analyzed. Dataset details are summarized in Table I. Fig. 6
illustrates the horizontal positioning results of both algorithms
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Fig. 6. Trajectory estimation results of our dataset. (a) aM-1. (b) bM-1. (c) cM-1.

TABLE I
INFORMATION ABOUT THE DATASETS

TABLE II
HORIZONTAL POSITION AND VELOCITY ERROR

STATISTICS OF OUR DATASET

across three different experimental scenarios. Table II provides
the statistical metrics of positioning results for two datasets per
scene in the three scenarios.

The experimental results demonstrate that the proposed
SC-EKF-MIO algorithm exhibits significant advantages in
horizontal positioning accuracy compared to the MAINS. As
shown in Fig. 6, under closed-loop multilap path testing
scenarios, the MAINS algorithm displays noticeable trajectory
drift, whereas the SC-EKF-MIO maintains close alignment
with the reference trajectory. In terms of accuracy metrics,
the MAINS method exhibits an average horizontal position
error rms exceeding 7 m, whereas the SC-EKF-MIO method
achieves an average horizontal position error rms of under
2.5 m. Quantitative comparisons in Table II further vali-
date this conclusion: on datasets with trajectory lengths of

150–250 m, the 68% cumulative distribution function value of
horizontal position errors for SC-EKF-MIO averages approxi-
mately 2.4 m, representing a reduction of about 60% compared
to MAINS’s 6.3 m. In terms of speed estimation accuracy,
SC-EKF-MIO achieves an average horizontal speed error rms
of 0.13 m/s, representing an improvement of approximately
38.1% over MAINS’s average of 0.21 m/s.

The pronounced accuracy gains of the proposed algorithm
can be attributed to two key factors. First, by leveraging
stochastic cloning within a sliding-window framework, the
method maintains a sequence of historical states over a
fixed time horizon. Each incoming observation simultaneously
updates both the current state and the contributions of past
states, yielding a smoothing-like effect and making more
comprehensive use of the available measurements than the
traditional ESKF implementation in MAINS. In addition, the
proposed algorithm incorporates magnetic-vector heading cor-
rection by leveraging interframe differences in magnetic-field
vectors to enhance heading estimation performance. Detailed
improvements in heading accuracy will be discussed in
Section IV-D.

Fig. 7 shows normalized magnetic-field magnitude maps
for three different scenarios. As illustrated, the magnetic-field
distributions vary significantly across these typical environ-
ments. However, when comparing the corresponding trajectory
sets in Fig. 6, it is evident that these differences in magnetic
characteristics do not lead to appreciable fluctuations in the
localization performance of SC-EKF-MIO. Despite the distinct
structural layouts, the SC-EKF-MIO trajectories remain highly
coincident with the reference paths in all cases, demonstrating
that the algorithm effectively mitigates the impact of spatial
magnetic-field variability. This robustness can be attributed to
the method’s nonparametric treatment of the magnetic field.
This reduction in the state’s degrees of freedom not only
enhances estimation precision but also avoids the need for
complex tuning of the magnetic-field model.

C. Test Results on Public Datasets

In this section, we conduct further validation of the proposed
algorithm using the open dataset from MAINS [10]. In the
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Fig. 7. Magnetic-field magnitude maps in different scenarios.

MAINS experiments, the hardware configuration comprised
30 magnetometers and one MEMS-IMU. For consistency
and fairness, our comparison employs the MAINS method
with a square array of five magnetometers. In the MAINS
study, a motion-capture system provided position measure-
ments for the first 60 s of each test trajectory to aid filter
convergence. As no such external assistance exists in practical
scenarios, we disable all position-aiding in our comparative
evaluation.

Fig. 8 demonstrates the trajectory estimation compari-
son under a scenario with an average altitude of 0.50 m.
The comparison reveals that MAINS exhibits significant
cumulative position errors during multiloop motion, accom-
panied by rapid divergence in heading angle estimates. In
contrast, the proposed SC-EKF-MIO algorithm effectively
suppresses the accumulation of positional error through its
stochastic cloning mechanism and magnetic-vector attitude
correction, maintaining tight adherence to the reference
trajectory.

According to the statistical results in Table III, the pro-
posed SC-EKF-MIO achieves an rms horizontal position
error of approximately 0.56 m on the dataset with an
average altitude of 0.50 m, representing an 83% improve-
ment compared to MAINS’s 3.44 m. Notably, in velocity
estimation, SC-EKF-MIO reduces the rms error by 40%
relative to MAINS, demonstrating that the enhanced magnetic-
field model and multistate constraints effectively improve the
accuracy of velocity estimation. Comparisons of localiza-
tion results and statistical metrics for the remaining public
datasets, along with detailed numerical values, are provided in
Table IV and Fig. 9. These results confirm that the proposed

TABLE III
ERROR STATISTICS OF PUBLIC DATASET-1

TABLE IV

ERROR STATISTICS OF PUBLIC DATASET-2

TABLE V

RMS HEADING ANGLE ERROR STATISTICS (UNIT: ◦)

TABLE VI

RMS VELOCITY ERROR STATISTICS (UNIT: M/S)

SC-EKF-MIO algorithm achieves high-precision localization
on open datasets without relying on external positional
references.

Fig. 9 shows both algorithms’ localization results diverging
significantly in position and heading. This behavior arises
because the dataset’s elevation remains between 0.70 and
0.80 m. We hypothesize that, at this elevation, the magnetic-
field gradient attenuates substantially, causing the gradient
variations detected by the magnetometer array to flatten. As
a result, this flattening introduces errors into the perturbation
model linking magnetic gradient variations to pose changes,
ultimately causing localization divergence.

D. Analysis of Magnetic-Vector Constraint Update

To validate the optimization effect of the magnetic-vector
constraint in the proposed algorithm on attitude estimation,
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Fig. 8. Trajectory estimation results of public datasets. (a) LP-1. (b) LP-2. (c) LP-3.

TABLE VII

ERROR STATISTICS ON THE PUBLIC DATASET FOR DIFFERENT VALUES OF m

Fig. 9. Localization results for the remaining public datasets. (a) NP-1.
(b) NP-3. (c) NT-1. (d) NT-2.

this section designs a comparative experiment based on the
acquired reference attitude of indoor trajectories. In the SC-
EKF-MIO solution process, the magnetic-vector constraint is

Fig. 10. Comparison of heading angle errors with and without magnetic-
vector constraint. (a) aL-1. (b) aM-1.

first disabled and then enabled, and the calculated heading
angles are compared with the reference heading angles. The
rms values of the heading angle deviations are statistically
analyzed. Fig. 10 presents the heading angle error comparisons
for two datasets, aL-1 and aM-1, and Table V provides the
corresponding rms statistics of heading angle errors.

As shown in Fig. 10, the heading angle error exhibits signif-
icant temporal divergence when the magnetic-vector constraint
is disabled. By the end of the trajectory, the maximum heading
deviation approaches 40◦. This phenomenon confirms that the
heading angle in MIO remains in an unobservable state in the
absence of absolute heading references. In contrast, enabling
the magnetic constraint substantially reduces the divergence
rate of heading errors. According to the statistical metrics in
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Table V, the rms heading error remains consistently below
2◦. These results demonstrate that introducing the magnetic-
vector constraint effectively mitigates heading drift under
unobservability conditions. The average rms heading error
decreases from 9.8◦ to 1.80◦, achieving an approximately
70% improvement in heading estimation accuracy. By exploit-
ing the slow spatial variation of magnetic disturbances, the
algorithm establishes relative constraints on the navigation-
frame magnetic-field vectors. The results demonstrate that the
proposed method not only mitigates the impact of magnetic
interference but also delivers more reliable positioning and
heading estimation. This notable improvement arises from the
cube relationship governing magnetic-field attenuation with
distance [30]. Consequently, magnetic disturbances vary only
minimally over small spatial extents and change gradually
over larger areas. In typical indoor environments, the magnetic
field does not exhibit abrupt fluctuations, thereby ensuring the
validity of the magnetic-vector constraint.

E. Analysis of the Impact of Magnetic-Field Gradients

The proposed algorithm utilizes a magnetometer array to
measure spatial magnetic gradient variations and constructs
constraint information based on the relationship between
local gradient changes and the platform’s pose. Consequently,
significant magnetic gradient variations in the localization
environment are critical for the performance of MIO. Due
to the cubic decay of magnetic-field intensity with distance,
this experiment controls the prominence of magnetic gra-
dients by adjusting the sensor platform’s height above the
indoor ground. Furthermore, the impact of different gradient
magnitudes on odometry performance is analyzed.

Fig. 11 presents normalized magnetic-field magnitude maps
at three different heights: low (0.4 m), medium (0.6 m), and
nominal (0.8 m). Fig. 12 displays velocity estimation results at
varying heights within the same indoor environment. Table VI
lists the corresponding rms velocity estimation errors, and
Fig. 13 shows the rms error variation with height across the
dataset.

It is clearly observable from Fig. 11 that, as the measure-
ment height increases, the magnetic-field magnitude becomes
noticeably smoother. Correspondingly, the velocity estima-
tion error plots for the three height levels show that, as
the magnetic-field gradient diminishes, the algorithm’s error
fluctuations increase. The rms statistics of the velocity error
demonstrate that the significance of the field gradient has a
decisive impact on algorithm performance: at the low height
(0.4 m), the mean velocity error rms is only 0.075 m/s; at the
medium height (0.6 m), it rises to 0.135 m/s; and at the normal
height (0.8 m), it further increases to 0.17 m/s. Nonethe-
less, even at the normal height, SC-EKF-MIO achieves a
velocity error rms that is substantially lower than MAINS’s
0.34–0.35 m/s.

The degradation in performance with decreasing magnetic-
field significance can be explained as follows. In a mag-
netometer array, the corrective information primarily arises
from the sensitivity of the magnetic measurements to changes
in position and orientation. As height increases, the spatial
gradient of the magnetic-field weakens, meaning that the same

Fig. 11. Magnetic-field magnitude maps at low, medium, and nominal heights.

Fig. 12. Velocity estimation results at varying heights in the same indoor
environment. (a) aL-1. (b) aM-1. (c) aN-1.

platform displacement induces smaller magnetic differences,
which in turn lowers the signal-to-noise ratio of the mag-
netometer readings. The filter, therefore, struggles to extract
effective corrections from these weak-gradient observations,
degrading state-estimation performance.

Moreover, this analysis of the magnetic-field gradient also
explains why both MAINS and SC-EKF-MIO exhibit pro-
nounced position and heading drift in the public dataset results
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Fig. 13. Velocity error versus height.

shown in Fig. 9: the data were collected at an average height of
0.80 m, where the field attenuation is significant, leading to an
overall decline in estimation accuracy. As shown in Fig. 13,
the velocity RMSE increases synchronously with the rising
average height of the dataset, which effectively illustrates
the performance characteristics of the magnetic array inertial
odometry during application.

F. Analysis of the Stochastic Cloning Sliding-Window Length

As noted in Section II-B, the theoretical basis of this
work rests on the assumption that the local magnetic-field
parameters remain invariant within a sufficiently small
spatiotemporal neighborhood. This implies that the local
magnetic-field model has a limited region of validity. The SC-
EKF used here maintains m historical states within a sliding
window. The information carried by these m historical states is
combined with current observations to construct relative pose
constraints. The choice of m determines the temporal length
of the sliding window, and consequently, the proposed method
is sensitive to the selected value of m. In the following, we
analyze the effect of the cloned-state window length using the
public dataset.

As described in Section III-C, dt denotes the time interval
between two consecutive magnetometer array update steps
and, equivalently, the time interval between cloned states.
Hence, the cloned-state window length corresponding to a
given m is T = m · dt. In the open dataset experiments, dt
is fixed at 0.05 s. Therefore, the analysis is performed by
varying m.

Table VII reports the error statistics for three public datasets
under different values of m. The minimum value in each row
is highlighted in bold. The results indicate that m = 2 yields
the best performance across all statistical metrics for the three
datasets, and shows a clear improvement over m = 1. When
only a single cloned state is retained, the historical information
available to build relative pose constraints is limited, which
increases the variance of the estimates. Moreover, m = 1
implies that filter updates occur at shorter time intervals.
Because IMU errors are small over short intervals, the state
estimate becomes relatively more susceptible to noise in the
magnetometer array observations. With m = 2, more relative
pose information is included, strengthening the observational
constraints and thereby significantly reducing the influence of
IMU integration errors on position.

However, when m is increased further, performance grad-
ually degrades. On one hand, a larger m extends the
spatiotemporal span covered by the cloning window. If the

span exceeds the applicability region of the local magnetic-
field model, the model can no longer be approximated as
invariant over the longer interval, producing biased obser-
vations. On the other hand, an excessively long window
degrades the system’s dynamic responsiveness and imposes
a substantially higher computational burden.

Beyond the considerations above, because the effective
region of the local magnetic-field model is fundamentally
spatial, the choice of m should also account for the platform’s
motion velocity. For faster platforms, e.g., vehicles, an appro-
priate adjustment strategy is to reduce m while keeping dt
unchanged, or to reduce dt so that, for the same number of
cloned states m, the total window length T is smaller.

V. CONCLUSIONS AND FUTURE WORK

In this article, we have presented SC-EKF-MIO, a
stochastic-cloning-based MIO method. By leveraging a mag-
netometer array to observe a local magnetic-field model and
estimating its temporal variations, we infer the platform’s
absolute velocity and use it to correct the position, veloc-
ity, and attitude obtained from IMU integration. To address
the unobservability of absolute heading, the algorithm incor-
porates constraints on differences between magnetic-field
vectors, successfully improving heading estimation accu-
racy and thereby enhancing overall positioning precision.
Experimental results demonstrate that SC-EKF-MIO achieves
high positioning accuracy in environments with pronounced
magnetic-field gradients. Under comparable sensor configura-
tions, our method outperforms MAINS in both velocity and
attitude estimation. Notably, SC-EKF-MIO requires neither
motion assumptions nor a prior magnetic-fingerprint database,
offering a low-power, low-cost, and reliable solution for non-
cooperative indoor platforms, especially pedestrian or tunnel
navigation, under no-prior-information conditions. However,
this performance is contingent on the presence of pronounced
magnetic-field gradient features in the environment.

Future work will focus on evaluating algorithm performance
in environments where the magnetic-field gradient is weak.
One promising direction is to integrate magnetic-sequence
waveform matching to bolster velocity estimation when
field gradients are minimal. Moreover, for pedestrian-tracking
applications, one could leverage measurements from sen-
sors mounted on other body segments to generate additional
constraints, thereby establishing a cooperative, body-sensor-
network framework for collaborative localization.
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