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Annex C7

(informative) 

An overview of the Allan variance method of IFOG noise analysis

C.1 Allan variance background

Allan variance is a time domain analysis technique originally developed to study the frequency stability of
oscillators [C1].8 It can be used to determine the character of the underlying random processes that give rise
to the data noise. As such, it helps identify the source of a given noise term in the data. The source may be
inherent in the instrument, but in the absence of a plausible mechanism within the instrument its origin should
be sought in the test set up. The Allan variance adopted in this standard may be used as a stand-alone method
of data analysis or to complement any of the frequency domain analysis techniques. It should be mentioned
that the technique can be applied to the noise study of any instrument. Its value, however, depends upon the
degree of understanding of the physics of the instrument. Following is an overview of the Allan variance and
its adaptation to the noise properties of IFOGs, similar to that described in [C6] for ring laser gyros.

In the Allan variance method of data analysis, the uncertainty in the data is assumed to be generated by noise
sources of speciÞc character. The magnitude of each noise source covariance is then estimated from the data.
The deÞnition of the Allan variance and a discussion of its use in frequency and time metrology is presented
in [C1] and [C7].

In this annex, AllanÕs deÞnition and results are related to Þve basic gyro noise terms and are expressed in a
notation appropriate for gyro data reduction. The Þve basic noise terms are angle random walk, rate random
walk, bias instability, quantization noise, and rate ramp.

Consider N samples of gyro data9 with a sample time of to. Form data clusters of lengths to, 2to, ..., kto
(k<N/2) and obtain averages of the sum of the data points contained in each cluster over the length of that
cluster. The Allan variance is deÞned as a function of cluster time.

To be speciÞc, the Allan variance can be deÞned either in terms of the output rate, W(t), or the output angle

The lower integration limit is not speciÞed as only angle differences are employed in the deÞnitions. Angle
measurements are made at discrete times given by t = kto, k = 1, 2, 3, ..., N. Accordingly, the notation is sim-
pliÞed by writing Qk = Q(kto).

The average rate between times tk and tk + t is given by:

where 

t = mto

7This annex is adapted from Annex C in IEEE Std 647-1995, IEEE Standard SpeciÞcation Format Guide and Test Procedure for Single-
Axis Laser Gyros.
8The numbers in brackets preceded by the letter C correspond to those of the bibliography in C.4.
9Sometimes referred to as time series or data streams.
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The Allan variance

 

10

 

 is deÞned as:

where

is the ensemble average

The Allan variance is estimated as follows:

The Allan variance obtained by performing the prescribed operations, is related to the PSD of the noise
terms in the original data set. The relationship between Allan variance and the two-sided PSD
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given by:

(C.1)

Equation (C.1) is the key result that will be used to calculate the Allan variance from the rate noise PSD. An
interpretation is that the Allan variance is proportional to the total noise power of the gyro rate output when
passed through a Þlter with the transfer function of the form sin
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. This particular transfer function is
the result of the method used to create and operate on the clusters.

It is seen from Equation (C.1) and the above interpretation that the Þlter bandpass depends on 

 

t

 

. This sug-
gests that different types of random processes can be examined by adjusting the Þlter bandpass, namely by
varying  t  . Thus, the Allan variance provides a means of identifying and quantifying various noise terms that
exist in the data. It is normally plotted as the square root of the Allan variance versus 

 
t

 
, 

 
[s

 
(

 
t

 
)], on a log-log

plot.

Subclauses C.1.1 through C.1.7 show the application of Equation (C.1) to a number of noise terms that are
either known to exist in the IFOG or otherwise inßuence its data. Detailed derivations are given in [C6]. The
physical origin of each noise source term will be discussed.
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 Frequently the term Allan variance is also used to refer to its square root, 
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 Unless speciÞcally stated, the term PSD is Annex C refers to the two-sided PSD. Note that 
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 is the PSD of stationary random
processes. For nonstationary processes, such as ßicker noise, the time average PSD should be used.

s2 t( )
1
2
--- Wk m+ WkÐ( )

2
á ñ=

1

2t2
-------- qk 2m+ 2qk m+Ð qk+( )2á ñ=

á ñ

s2 t( )
1

2t2 N 2mÐ( )
------------------------------- qk 2m+ 2qk m+Ð qk+( )2

k 1=

N 2mÐ

å=

s2 t( ) 4 SW f( )
sin4 pft( )

pft( )2
---------------------- fd

0

  ¥ 
ò

 
=



 

IEEE
Std 952-1997 IEEE STANDARD SPECIFICATION FORMAT GUIDE AND TEST PROCEDURE

 

64

 

Copyright © 1998 IEEE. All rights reserved.

 

C.1.1 Angle random walk

 

The main source for this error is spontaneous emission of photons. This component of the IFOG angle ran-
dom walk is caused by the spontaneously emitted photons that are always present in the source output. The
angle random walk due to spontaneously emitted photons is called the quantum limit [C4].

Other high frequency noise terms that have correlation time much shorter than the sample time, can also
contribute to the gyro angle random walk. However, most of these sources can be eliminated by design.
These noise terms are all characterized by a white noise spectrum on the gyro rate output.

The associated rate noise PSD is represented by:

(C.2)

where 

 

N

 

 is the angle random walk coefÞcient

 

12

 

 

Substitution of Equation (C.2) in Equation (C.1) and performing the integration yields:

(C.3)

As shown in Figure C.1, Equation (C.3) indicates that a log-log plot of 
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) versus 
 

t
 

 has a slope of Ð1/2. Fur-
thermore, the numerical value of 

 

N

 

 can be obtained directly by reading the slope line at 

 

t 

 

= 1.
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The zero slop portion of the rate PSD in (

 

°

 

/h)
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/Hz represents angle random walk. The relationship between angle random walk coef-
Þcient 
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 and the PSD is
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Figure C.1Ñs(t)  Plot for angle random walk
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C.1.2 Bias instability

 

The origin of this noise is the electronics, or other components susceptible to random ßickering [C5].
Because of its low-frequency nature it shows up as the bias ßuctuations in the data. The rate PSD associated
with this noise is:

(C.4)

where

 

B

 

is the bias instability coefÞcient

 

f

 

0

 

is the cutoff frequency

Substitution of Equation (C.4) in Equation (C.1) and performing the integration yields:

(C.5)

where 
 

x
 

is 
 

p
 

f
 

0

 
t

 

Ci

 

is the cosine-integral function [C2]

Figure C.2 represents a log-log plot of Equation (C.5) that shows that the Allan variance for bias instability
reaches a plateau for 

 

t

 

 much longer than the inverse cut off frequency. Thus, the ßat region of the plot can be
examined to estimate the limit of the bias instability as well as the cutoff frequency of the underlying ßicker
noise.
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Figure C.2Ñs(t)  Plot for bias instability (for f0 = 1)



 

IEEE
Std 952-1997 IEEE STANDARD SPECIFICATION FORMAT GUIDE AND TEST PROCEDURE

 

66

 

Copyright © 1998 IEEE. All rights reserved.

 

C.1.3 Rate random walk

 

This is a random process of uncertain origin, possibly a limiting case of an exponentially correlated noise
with a very long correlation time, as discussed in Clause 3.

The rate PSD associated with this noise is:

(C.6)

where 
 

K

 

is the rate random walk coefÞcient

Substitution of Equation (C.6) in Equation (C.1) and performing the integration yields:

(C.7)

This indicates that rate random walk is represented by a slope of +1/2 on a log-log plot of 

 

s(t

 

) versus 

 

t

 

, as
shown in Figure C.3. The magnitude of this noise can be read off the slope line at 

 

t

 

 = 3.

 

C.1.4 Rate ramp

 

For long, but Þnite time intervals this is more of a deterministic error rather than a random noise. Its presence
in the data may indicate a very slow monotonic change of the IFOG source intensity persisting over a long
period of time. It could also be due to a very small acceleration of the platform in the same direction and per-
sisting over a long period of time. It appears as a genuine input to the IFOG given by:

(C.8)

where 
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is the rate ramp coefÞcient
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Figure C.3Ñs(t)  Plot for rate random walk

W Rt=



 

IEEE
FOR SINGLE-AXIS INTERFEROMETRIC FIBER OPTIC GYROS Std 952-1997

Copyright © 1998 IEEE. All rights reserved.

 

67

By forming and operating on the clusters of data containing an input given by Equation (C.8), we obtain:

(C.9)

This indicates that the rate ramp noise has a slope of +1 in the log-log plot of 

 

s(t

 

) versus 

 

t

 

, as shown in Fig-

ure C.4. The magnitude of rate ramp 

 

R

 

 can be obtained from the slope line at .

The rate PSD associated with this noise is:

(C.10)

The user should be aware that there may be a ßicker acceleration noise with 1/
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 PSD that leads to the same
Allan variance 

 

t

 

 dependence. See Annex B for a discussion.

 

C.1.5 Quantization noise

 

This noise is strictly due to the digital nature of the IFOG output. The readout electronics registers a count
only when the gyro phase changes by a predetermined amount, e.g., 2
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/2
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, where 
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 = 0, 1, 2, ...

The angle PSD for such a process, given in [C8] is:

(C.11)

where 
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is the quantization noise coefÞcient
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The theoretical limit for 

 

Q

 

 is equal to  where 

 

S

 

 is the gyro scale factor, for tests with Þxed and uni-
form sampling times. The rate PSD is related to the angle PSD through the equation:

(C.12)

and is

(C.13)

Substitution of Equation (C.13) in Equation (C.1) and performing the integration yields:

(C.14)

This indicates that the quantization noise is represented by a slope of Ð1 in a log-log plot of 

 

s(t

 

) versus 

 

t

 

, as

shown in Figure C.5. The magnitude of this noise can be read off the slope line at .

The user should be aware that there are other noise terms with different spectral characteristics, such as
ßicker angle noise and white angle noise, that lead to the same Allan variance 

 

t

 

 dependence. See Annex B
for a discussion of these noise terms.
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C.1.6 Other noise terms

 

C.1.6.1 Exponentially correlated (Markov) noise

 

This noise is characterized by an exponential decaying function with a Þnite correlation time.

The rate PSD for such a process:

(C.15)

where 
 

q
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is the noise amplitude

 

T

 

c

 

 

 

is the correlation time

Substitution of Equation (C.15) in Equation (C.1) and performing the integration yields:

(C.16)

Figure C.6 shows a log-log plot of Equation (C.16). It is instructive to examine various limits of this equa-
tion. For 

 

t

 

 much longer than the correlation time, it is found that:

(C.17)

which is the Allan variance for angle random walk where 
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 = 
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 is the angle random walk coefÞcient. For

 

t

 

 much smaller than the correlation time, Equation (C.16) reduces to:

(C.18)

which is the Allan variance for rate random walk.

 

C.1.6.2 Sinusoidal noise

 

The PSD of this noise is characterized by one or more distinct frequencies. A low-frequency source could be
the slow motion of the test platform due to periodic environmental changes. A representation of the PSD of
this noise containing a single frequency is given as:

(C.19)
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Multiple frequency sinusoidal errors can be similarly represented by a sum of terms such as Equation (C.19)
at their respective frequencies and amplitudes. Substitution of Equation (C.19) in Equation (C.1) and per-
forming the integration yields:

(C.20)

Figure C.7 shows a log-log plot of Equation (C.20). IdentiÞcation and estimation of this noise in IFOG data
requires the observation of several peaks. As is seen however, the amplitudes of consecutive peaks fall off
rapidly and may be masked by higher order peaks of other frequencies making observation difÞcult.

Figure C.6Ñs(t)  Plot for correlated noise
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C.1.7 Combined effects of all processes

 

In general, any number of the random processes discussed above (as well as others) can be present in the
data. Thus, a typical Allan variance plot looks like the one shown in Figure C.8. Experience shows that in
most cases, different noise terms appear in different regions of 

 

t

 

. This allows easy identiÞcation of various
random processes that exist in the data. If it can be assumed that the existing random processes are all statis-
tically independent then it can be shown that the Allan variance at any given 

 

t

 

 is the sum of Allan variances
due to the individual random processes at the same 

 

t

 

. In other words,

(C.21)

Thus estimating the amplitude of a given random noise in any region of 

 

t

 

 requires a knowledge of the ampli-
tudes of the other random noises in the same region.

 C.2 Estimation accuracy and test design  

A Þnite number of clusters can be generated from any Þnite set of data. Allan variance of any noise term is esti-
mated using the total number of clusters of a given length that can be created. Estimation accuracy of the Allan
variance for a given 

 

t

 

, on the other hand, depends on the number of independent clusters within the data set.

It can be shown that the percentage error, 

 

s

 

, in estimating 

 

s(t

 

) when using clusters containing 

 

K

 

 data points
from a data set of 

 

N

 

 points is given by:

(C.22)

Equation (C.22) shows that the estimation errors in the regions of short (long) 

 

t

 

 are small (large) as the num-
ber of independent clusters in these regions is large (small). In fact, this equation can be used to design a test
to observe a particular noise of certain characteristics to within a given accuracy. For example, to verify the
existence of a random process with a characteristic time of 24 h in the data to within an error of 25%. We
Þrst set 

 

s 

 

= 0.25 in Equation (C.22) and obtain:
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(C.23)

Since the suspected characteristic time is 24 h, clusters of the same length are created. Thus the total test
length needed for such a test is 24 

 

´

 

 9 = 216 h.

 

C.3 Tabulation of some variance analyses

 

A summary comparison of some variance analyses for noise processes is made in Table C.1. This table pre-
sents only a sample of analyses available, and is not meant to be a survey of all analyses. The polynomial
variance terms in the left hand column are identiÞed using gyro terminology. The individual terms relating to
each authorÕs publication are given with the same symbology as contained in that authorÕs publication,
including the deÞnitions of symbols. For ease in recognition of similarities, the coefÞcients of interest are
shown as the Þrst symbol in each polynomial expression. For example, the variance coefÞcient for the rate
random walk term in the third column of Table C.1, is 

 

K

 

2

 

. 

 

Table C.1ÑSummary comparison of publishing variance analyses for noise processes
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