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Abstract—Odometer has been proven to significantly improve the 
robustness and accuracy of the Global Navigation Satellite System / 
Inertial Navigation System (GNSS/INS) integrated vehicle navigation 
in GNSS-denied environments. However, odometer is inaccessible in 
many applications, especially for aftermarket devices and 
smartphones. To apply forward speed aiding without hardware 
wheeled odometer, we propose OdoNet, an untethered 
one-dimensional Convolution Neural Network (CNN)-based 
pseudo-odometer model learning from a single Inertial Measurement 
Unit (IMU). Dedicated experiments have been conducted to verify the 
generalization capability and the precision of the OdoNet. The results 
indicate that the IMU individuality, the vehicle loads, and the road 
conditions have little impact on the robustness and precision of the 
OdoNet, while the IMU biases and the mounting angles may notably 
ruin the OdoNet. Hence, a data-cleaning procedure is adopted to 
effectively mitigate the impacts of the IMU biases and the mounting 
angles. Compared to the processing mode using only non-holonomic 
constraint (NHC), by employing the pseudo-odometer, the positioning 
error is reduced by around 68%, while the percentage is around 74% 
for the hardware wheeled odometer. In conclusion, the proposed 
OdoNet can be employed as an untethered pseudo-odometer for 
vehicle navigation. 

 
Index Terms—Pseudo sensor, deep learning, inertial measurement unit, GNSS/INS integration 

 

 

I.  INTRODUCTION 

he Global Navigation Satellite System / Inertial Navigation 

System (GNSS/INS) integrated navigation system can 

provide full navigation parameters, including position, velocity, 

and attitude, and thus has been widely used in land vehicles. 

However, GNSS can be easily interfered or interrupted in urban 

environments. Inertial measurement units (IMU) can work 

independently, and INS can provide continuous navigation 

service during GNSS outages, which greatly improves the 

usability of the integrated navigation system. Being restricted 

by the poor precision and the low stability of the 

Micro-Electro-Mechanical System (MEMS) IMU, the MEMS 

integrated navigation system cannot maintain high-accuracy 

positioning in GNSS-denied environments, especially when the 

vehicle travels through city canyons, long tunnels, and 
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underground roads, in where GNSS tends to have long outages. 

Consequently, extra aiding sources or constraints, such as zero 

velocity update (ZUPT) [1], non-holonomic constraint (NHC) 

[2]-[4], wheeled odometer [4] , and et. al, have to be employed. 

ZUPT and NHC are kinds of virtual velocity observations from 

the vehicle or the IMU itself, which can be achieved 

independently. However, to use odometer aiding, we must 

attach an extra encoder to the wheel, or grab speed message 

from the Controller Area Network (CAN) or other networks 

inside the vehicle, which greatly increases the cost and 

complexity of the system integration. As a consequence, the 

wheeled odometer cannot be applied in many applications, 

especially for aftermarket devices and smartphones, which 

leads to poor positioning accuracy during GNSS outages, and 

thus significantly reduces the reliability of the integrated 

system in GNSS-denied environments. 

Sufficient experiment results have demonstrated that it is 

possible to estimate the vehicle speed by learning from a single 

IMU. In this paper, we propose OdoNet, an untethered 

convolution neural network (CNN)-based pseudo-odometer 

model, which can directly estimate the vehicle speed. The main 

contributions of this paper are listed as follows: 

● To apply forward speed aiding without hardware wheeled 

odometer, we propose a CNN-based pseudo-odometer to 
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estimate the forward speed of the vehicle. The 

pseudo-odometer combined with an effective zero-velocity 

detector is employed in the integrated navigation system to 

improve the positioning accuracy in GNSS-denied 

environments. 

● To fully verify the generalization capability and the 

precision of the OdoNet, dedicated experiments were carried 

out. The experiment results indicate that the IMU individuality, 

the vehicle loads, and the road conditions have little effect on 

the OdoNet, while the IMU biases and the mounting angles 

may notably ruin the OdoNet. 

● To mitigate the impacts of the IMU biases and the 

mounting angles, a data-cleaning procedure is adopted to 

precisely compensate for these factors. The data-cleaning 

procedure is proven to significantly improve the robustness and 

the precision of the OdoNet. 

The remainder of this paper is organized as follows: In the 

next section, a brief literature review on IMU-based deep 

learning network is presented. Then, the details of the OdoNet 

architecture and the integrated navigation system enhanced by 

it are described. The experiments and the results are presented 

to evaluate the precision and robustness of the proposed method. 

Finally, we conclude the proposed method. 

II. RELATED WORKS 

The conventional GNSS/INS integrated navigation has been 

studied for decades, so only deep neural networks (DNN) will 

be discussed here. According to the application of the deep 

learning network, we can classify these networks into two 

categories, including IMU-based odometry and 

velocity-estimation networks. 

A. IMU-based Odometry 

Recently, more and more researchers have focused on the 

end-to-end DNN based IMU, such as inertial odometry 

[14]-[18] and visual-inertial odometry (VIO) [19]-[22]. The 

inertial odometry only uses IMU data to estimate the 6-DOF 

pose, while VIO uses both IMU and camera data. 

For inertial-only odometry, Chen proposed IONet [14], a 

two-layer Bi-LSTM network to learn location transforms in 

polar coordinates from raw IMU data, but the network was only 

for 2-dimensional (2D) navigation. As a future work, Chen 

released OxIOD [15], the dataset for deep inertial odometry. 

However, the dataset is only available for low-speed PDR 

applications. Yan [16] proposed three novel neural inertial 

navigation architectures for Pedestrian Dead Reckoning (PDR) 

applications on mobile phones, which were proved to 

outperform previous methods. Esfahani presented AbolDeepIO 

[17], a triple channel long-short time memory (LSTM)-based 

DNN for vehicles, which could extract features from 

accelerometer, gyroscope, and time interval. However, the 

proposed model did not consider the vehicular characteristics. 

Afterward, an IMU-based 6-DOF inertial odometry was 

proposed in [18], which combined CNN with Bidirectional 

Long-short Time Memory (Bi-LSTM), but the experiments 

showed large increased error along the vertical axis. 

DNN-based VIO, including supervised learning, 

unsupervised learning, and self-supervised, has also been 

studied for many years. VINet  [19] was an end-to-end deep 

learning VIO network, which applied CNN to extract features 

from the images and LSTM to process IMU, and used a core 

LSTM to combine visual and inertial data. VIOLearner 

[20]-[21] was an unsupervised deep network of VIO, which 

could correct errors online. In [22], a novel self-supervised 

deep learning VIO network was proposed, which adopted 3D 

geometric constraints and updated additional bias for IMU 

using the pose feedback. Many researchers have also focused 

on the deep learning network combining LiDAR and IMU 

[23]-[24]. 

DNN-based odometry substitutes neural networks for 

precise mathematical models, which completely changes the 

navigation algorithms. To train a general DNN model, we must 

carry out heavy data collection work, and even so, we still 

cannot guarantee that the model can work every time in every 

scene. In practical application, there is still a lot of work to do 

for DNN-based odometry. 

B. Velocity Estimation 

Using IMU data to estimate velocity has also become a 

research hotspot. Some researchers only construct a 

classification problem to detect some special states, like zero 

velocity and zero angular velocity states. Others employ 

IMU-based DNN to directly estimate velocity. 

ZUPT is an effective approach to constrain INS drifts in PDR 

[1], [5]-[7] and VDR [9] (Vehicle Dead Reckoning) 

applications. Xinguo et al. proposed AZUPT [5], a CNN-based 

zero-velocity detector, which could adaptively pick ZUPT 

points in different motion types. In [6]-[7], LSTM-based 

recurrent neural network (RNN) [8] was used as a zero-velocity 

detector to improve the foot-mounted inertial navigation. 

Zero-velocity states can also be detected using regressed 

velocity from a DNN, and thus directly estimating velocity may 

be more effective and reasonable.  

Brossard [9] applied an LSTM network to detect a variety of 

situations of interest on wheels, including zero velocity, zero 

angular velocity, zero lateral velocity, and zero vertical velocity. 

These constraints were treated as pseudo-measurements to 

refine the estimates of the IEKF (Invariant Extended Kalman 

Filter). However, if we model the lever-arms and the mounding 

angles of the IMU to the vehicle precisely, then the NHC (zero 

lateral velocity and zero vertical velocity) is typically satisfied 

in the non-steering wheel of the vehicle, except for some 

special cases. In other words, DNN can be applied to directly 

estimate the vehicle speed, not just NHC. 

Moreover, the IMU-based DNN, which directly estimates 

the velocity, is also a research hotspot. A 2D CNN-based 

deep-learning model was used to predict 3D speed based on a 

window of IMU samples for mobile phone applications [10], 

and the regressed speed was used as a pseudo measurement in 

Extended Kalman Filter (EKF). RIDI [11] applied Support 

Vector Machine and Support Vector Regression to form a 

regression model and predicted velocity in smart-phone for 

correcting low-frequency biases in the accelerations, which 

were integrated twice to estimate position. A hybrid network 

[12]-[13] was proposed for PDR applications, which used a 

CNN to extract features from a signal stream, and a Bi-LSTM 

to estimate velocity from the extracted features. 

As one can see, most of the velocity estimating models are 

designed for PDR applications, which are not suitable for 

Authorized licensed use limited to: Wuhan University. Downloaded on April 26,2022 at 11:57:49 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3169549, IEEE Sensors
Journal

Hailiang Tang et al.: OdoNet: Untethered Speed Aiding for Vehicle Navigation Without Hardware Wheeled Odometer 3 

 

 

vehicle navigation. The vehicle has many characteristics that 

are completely different from mobile phones or foot-mounted 

devices. In addition, previous works show few pieces of 

evidence to prove the robustness and generalization capability 

of their network, which are the most important characteristics 

for data-driven algorithms. For vehicle integrated navigation 

system, what we need is an aiding source that can maintain 

high-accuracy positioning during GNSS signal blockage or 

degradation, taking our OdoNet for example. Furthermore, 

estimating only the forward speed of the vehicle rather than 

three-dimensional speed can reduce the complexity of the DNN 

model, and thus improve the robustness and practicality. 

III. PROPOSED METHOD 

This section will describe the details of the proposed method, 

including the deep learning architecture of the OdoNet, the 

indispensable data-cleaning procedure, and the framework of 

the integrated navigation system enhanced by the OdoNet. 

A. OdoNet Architecture 

According to our literature review, various basic models 

have been applied for IMU-based DNN, including LSTM 

[6]-[7], [9], [16]-[17], Bi-LSTM [14], [16], CNN [5], [10], 

[15]-[16], and even hybrid model [12]-[13], [18]. RNN based 

networks, including LSTM and Bi-LSTM, are typically used 

for time-series data processing, e.g. time-series of IMU data. 

Although RNN-based networks might have better precision, 

their convergence speed is extremely low during model training, 

which greatly increases the verification cycle of the model. 

According to our experiments in vehicle speed estimation, 

CNN outperforms RNN in both precision and efficiency 

running in a GPU, which will be proved in Ⅳ.B. Hence, we 

pick the one-dimensional (1D) CNN model, and the network 

architecture of the OdoNet is shown in Fig. 1. As for the size of 

the window, many previous works [12]-[13], [17] have 

evaluated its effects on their networks. If the window size is too 

small, it is hard to extract enough features to estimate speed, 

while it might cause a long-time delay if the window size is too 

large. For our OdoNet, experiment results demonstrate that one 

second is the most appropriate window size. Whilst, the output 

rate of the 6-axes IMU in our self-developed GNSS/INS 

integrated system is 50 Hz, so the input data is treated as a 1D 

vector with a length of 50 and a depth of 6. 

As shown in Fig. 1, the OdoNet consists of four 1D 

convolution layers, with max-pooling layers for sub-sampling. 

After flattening depth, three fully connected layers are 

employed and output the regressed speed. The activation 

functions between two layers are ReLU [32] units, except the 

pooling layers. Moreover, two dropout layers with probability 

of 0.5 are used before the first two fully connected layers, to 

avoid over-fitting during training. The kernel size, the depth of 

the convolution layer, and the units of the fully connected layer 

can be found in Fig. 1. Hence, the input and output of the 

OdoNet can be described as follows: 

  (1) 

where  and  are the IMU measurements processed in the 

data-cleaning procedure, i.e., the biases and mounting angles 

compensated measurements in the vehicle-frame (v-frame), see 

III.B;  is the OdoNet itself;  is the scale factor of the output, 

and  is the regressed speed. For typical land vehicle 

applications, the maximum speed of the vehicle can reach 30 

m/s in an urban environment. Hence, we use a fixed scale factor 

of  to normalize the speed, which can accelerate the 

convergence of the model during training. To solve the optimal 

parameter  inside the OdoNet, we can minimize the loss 

function  on the training dataset as follows: 

  (2) 

The loss function is defined as the mean squared error (MSE) 

between the truth  and the regressed value  as 

follows: 

  (3) 

where  is the size of the IMU samples. 

Since ReLU activation function [32] is applied in the 

network, which means that the output of the network is always 

greater than or equal to zero, this characteristic provides an 

opportunity for zero-velocity detection. In other words, the 

regressed speed is zero or close to zero during stationary states. 

Consequently, we can apply a fixed threshold detector to 

determine zero-velocity states. Mathematically, we can 

 
Fig. 1. Proposed OdoNet network architecture. 6-axes IMUs with the output rate of 50 Hz are used, and thus the size of the input layer is 6@50. The INPUT, Conv, 
Max-Pool and FC represent input layer, convolution layer, max pooling layer, and fully connected layer, respectively. The name of each layer is shown below the 

graph, with the kernel size for convolution and max pooling layers. The numbers above the network are the depth@length for convolution and max pooling layers, 

or the units for the fully connected layers. The schematic of the DNN is generated by [29]. 
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formalize the detection problem as a binary hypothesis testing 

problem, where the detector can choose between the following 

two hypotheses [1]: 

  (4) 

According to the experience of engineering, the threshold of the 

zero-velocity detector is set to 0.1 m/s. Hence, the judgment for 

these two hypotheses can be written as follows: 

  (5) 

It is generally known that the robustness and precision of a 

DNN are affected by various factors. The possible factors 

include the IMU biases, the mounting angles, the IMU 

individuality, the vehicle loads, and the road conditions. In 

section Ⅳ. D, experiment results will be presented to 

demonstrate the robustness and the generalization capability of 

the OdoNet. It should be noted that the OdoNet can only 

estimate positive speed, i.e. the OdoNet will fail if the vehicle 

run in reverse direction. 

B. Data Cleaning 

According to our experiments, we find that the IMU biases 

and the mounting angles have strong impacts on the precision 

of the OdoNet. To mitigate or eliminate their effects, we 

compensate them in this data-cleaning procedure, which has 

been proven to significantly improve the robustness and the 

precision of the OdoNet. Specifically, we first compensate the 

IMU biases, and then convert the biases compensated IMU 

measurement into v-frame. 

Low-cost MEMS IMU has extremely low stability, with poor 

temperature characteristics, which leads to huge and rapidly 

changing biases [25]. As a matter of experience, taking 

ICM20602 for example, the biases of the gyroscope typically 

range from -2 °/s to 2 °/s, and the biases of the accelerometer 

typically range from -0.2 m/s2 to 0.2 m/s2. Moreover, each IMU 

has different characteristics of biases, which might seriously 

affect the robustness and precision of the OdoNet. Improving 

the complexity of the model or using a larger dataset might 

reduce the impact of the IMU biases, but it involves heavy 

dataset collecting work and more computational resources. The 

GNSS/INS integrated system can effectively and accurately 

estimate the IMU biases, as in (6). With the estimated 

gyroscope biases  and accelerometer biases , we can 

compensate gyroscope measurement  and accelerometer 

measurement  in advance.  represents the vector in the 

IMU body frame (b-frame). 

As we all know, the calculated speed by INS in v-frame is the 

function of the lever-arms  and the IMU mounting angles 

, as can be seen in (10). Hence, the regressed speed estimated 

by the OdoNet should be in v-frame exactly, rather than in 

b-frame. In addition, for most vehicle navigation applications, 

the navigation devices (including the IMU) are usually 

mounted on the given spot of the vehicle, which means that the 

lever-arms are almost unchanged. However, the mounting 

angles of the IMU with respect to the vehicle might be 

randomly set and unknown, which will change the IMU signal 

significantly and ruin the OdoNet. Consequently, the mounting 

angles must also be compensated in preprocessing. The 

estimating algorithm of the mounting angles is well described 

in [26]. The mounting angles are estimated in post-processing 

currently, but we can also estimate them online. However, the 

roll mounting angle cannot be estimated due to a lack of 

observability [26], so the OdoNet must be able to adapt this 

factor. Estimated pitch mounting angle  and heading 

mounting angle  can be converted to direction cosine 

matrix  [26]. Then, the raw IMU measurements can be 

converted from b-frame to v-frame, as  and , see (1). 

To sum up, in order to eliminate the impact of the unique 

IMU biases and the mounting angles, we compensate them in 

advance, as mentioned in (1). In section Ⅳ. D, we will show 

evidence about the importance of the data-cleaning procedure, 

and illustrate how these factors affect the robustness and 

precision of the OdoNet. 

C. Integrated Navigation System Framework 

The overview of the proposed integrated navigation system 

for vehicle application is depicted in abstract section. In a 

conventional GNSS/INS integrated navigation system, raw 

IMU data is processed by the INS mechanization algorithm 

[27]-[28], and an EKF is applied to fuse GNSS and INS, 

combining with non-holonomic constraint or other constraints 

or aiding sources. However, without odometer aiding, it might 

still lead to large positioning drifts in GNSS-denied urban 

environments, especially in the forward direction of the vehicle. 

Based on the proposed OdoNet, the pseudo-odometer with a 

zero-velocity detector can be employed in the integrated 

navigation system. As can be seen in the overview, raw IMU 

samples are compensated by the estimated IMU biases and the 

mounting angles in data-cleaning procedure. With the 

compensated IMU samples, the OdoNet predicts the raw 

vehicle speed, which is then filtered by an FIR (Finite Impulse 

Response) low-pass filter. The parameters of the FIR filter are 

tuned by evaluating the error of the filtered the speed, as can be 

seen in section IV.C. By considering the precision and time 

delay of the filtered speed, the cut-off frequency of the FIR 

filter is set to 0.1 Hz and its order is set to 64. The filtered 

vehicle speed is treated as a pseudo-odometer measurement and 

is also used to determine the zero-velocity state of the vehicle. 

Hence, the pseudo-odometer speed update, the zero-velocity 

update (ZUPT), and the zero angular rate update (ZARU) can 

be employed in EKF. 

The error state vector of the used EKF is defined as follows: 

  (6) 

where  and  can be written as follows: 

  (7) 

  (8) 

 represents the position error in navigation frame (n-frame) 

for the NED (North-East-Down) coordinate system;  

represents the velocity error;  denotes the attitude error using 

the psi-angle model [27];  and  represent the gyroscope 

and accelerometer biases error, respectively. The state equation, 

the GNSS positioning observation equation, the 
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implementation of the Kalman filter, and more detailed 

information can be referred to [27]-[28]. 

NHC is a kind of virtual velocity observation in the v-frame, 

which means that there is no lateral and vertical speed for the 

land vehicle. Odometer can provide forward speed aiding, and 

NHC and odometer can be combined to achieve 

three-dimensional velocity aiding in v-frame. The measured 

velocity in v-frame can be written as follows: 

  (9) 

The calculated velocity in v-frame by INS can be expressed as 

follows: 

  (10) 

where superscript  denotes the parameters that are 

calculated by INS;  denotes the speed of the odometer;  

denotes the observation noise;  represents the IMU mounting 

angles with respect to the vehicle frame;  is the lever-arms 

vector between b-frame and v-frame in b-frame. Typically, the 

measurement center of velocity observation in the v-frame is 

defined at the point in the rear wheel, where the wheeled 

odometer is installed, and it is tangent to the ground, as depicted 

in Fig. 2. 

When the stationary state is determined by the zero-velocity 

detector, ZUPT and ZARU can be applied to EKF. Zero 

velocity means that the IMU or the vehicle is stationary, and it 

can be written as: 

  (11) 

By using ZUPT during the stationary state, the drift of velocity 

and position can be constrained effectively, except the heading 

angle, and thus ZARU can be used simultaneously. Zero 

angular rates can be expressed as: 

  (12) 

where  denotes the inertial frame (i-frame), and  represents 

the observation noise.  

According to our dedicated experiments, the standard 

deviation values are set to at 0.1 m/s for both NHC and ZUPT 

and 0.1 °/s for ZARU. As for the odometer, we should consider 

its precision. Specifically, the standard deviation value of the 

real wheeled odometer is set according to its resolution, i.e. 0.1 

m/s for the used wheeled odometer (DFS60E). The value for 

the pseudo-odometer is derived from its evaluation metrics, i.e. 

0.3 m/s for the pseudo-odometer, see IV.C and IV.E. However, 

the basic hypothesis of NHC is not satisfied occasionally in 

some extreme cases, like slippage. The OdoNet might fail to 

estimate and present wrong speed with large error, and the 

zero-velocity detector might also give wrong judgment. 

Consequently, a fault detection algorithm can be applied to 

eliminate gross error in these observations. We use innovation 

[28] in EKF to detect and reject faults. The normalized 

innovation of the dimension  at time can be defined as: 

  (13) 

where  is the measurement innovation of this dimension; 

 is the covariance of this innovation. For the 

one-dimensional observation, if the degree of confidence is set 

to 95%. The observation with  (3.84 is the chi-square 

test parameter for the degree of confidence of 95%) will be 

judged as outlier or gross error, and will not be employed in the 

EKF. 

IV. EXPERIMENTS AND RESULTS 

This section examines the proposed OdoNet and the 

integrated navigation system enhanced by it. A comprehensive 

vehicle dataset was collected to train and evaluate the OdoNet. 

After preprocessing the dataset, the model was trained. Then, 

the metrics of the regressed speed and zero-velocity detection 

on the testing dataset were evaluated. Next, dedicated 

experiments were carried out to evaluate the possible factors 

that might affect the robustness of OdoNet, so as to verify the 

generalization capability of the OdoNet. Finally, we compared 

the performance of the integrated navigation system on three 

typical testing sequences using three different aiding sources, to 

evaluate the contribution of the proposed pseudo-odometer. 

Experiments mentioned below were all done offline. 

A. Dataset Collection 

As shown in Fig. 3, the whole sensors setup contains 9 

INS-Probe (our self-developed GNSS/INS integrated 

navigation system) modules, a high-precision wheeled 

odometer, and a navigation-grade POS (Position Orientation 

System) POS-A15. INS-Probe modules are responsible for 

collecting multi-sensors data, which includes GNSS RTK 

positioning from low-cost GNSS module (ZED-F9P), raw IMU 

data from MEMS IMU chip (ICM20602), and wheeled 

odometer (DFS60E). These sensors are precisely synchronized 

through hardware triggering. The output rate of the IMU is 50 

Hz, and the wheeled odometer is synchronously sampled with 

the IMU. The wheeled odometer is an optic encoder, DFS60E 

from SICK with 2048 lines, which will be used as a benchmark 

for the proposed OdoNet. POS-A15 can provide high-precision 

ground truth for evaluation of the positioning accuracy. The 

noise parameters used in this paper for ICM20602 and 

POS-A15 are the same as that in [33]. 

The whole dataset consists of 14 test sequences, covering 

various areas in Wuhan city. As depicted in Fig. 4, our dataset 

contains most of the typical scenes, including freeway, 

university campus, residential districts, industrial park, and 

other different testing scenes in urban environments. 9 

INS-Probe modules were used, and thus the data of 9 individual 

IMUs were collected, which greatly enriches the diversity of 

 
Fig. 2. Definitions of the vehicle frame (v-frame) and the IMU body frame 

(b-frame), and illustration of the IMU mounting angles and the lever-arms with 

respect to the v-frame. 
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the dataset. We split the dataset into two parts, one for training 

and one for testing. It should be noted that the training dataset 

and the testing dataset cannot contain the data in the same test 

sequence or the data collected by the same module, so as to 

ensure the effectiveness of the model. Specifically, the test 

sequences and the modules used in model training cannot be 

used in model testing again. The training dataset contains 10 

different sequences per INS-Probe module from 7 modules, 

that is 70 sequences in total. The testing dataset is collected 

from the rest two INS-Probe modules, each with 4 sequences, 

that is 8 sequences in total. The rest of the dataset (48 sequences) 

will not be used for training either testing. 

The labels for model training were generated from the real 

wheeled odometer. Statistical analysis was carried out on the 

prepared dataset, as showed in Fig. 5. The distributions of the 

dataset show that the speeds of most samples are lower than 15 

m/s. There is a total of 468786 samples for training, and 56744 

samples for testing. The collected dataset contained various 

road conditions, where the vehicle traveled at different speeds 

in different scenes. Specifically, the freeway is a high-speed 

scene, and the university campus and industrial park are 

low-speed scenes and median-speed scenes respectively. 

B. Model Training 

Our model was implemented based on the public available 

Keras framework with TensorFlow. The training was done on 

an NVIDIA TITAN Xp GPU. The training dataset was shuffled 

randomly, and 20% of them were used as validation dataset 

during the training. The hyperparameters in model training 

were derived by applying grid search to evaluate validation 

results. As a result, the Adam optimizer [30] was used with a 

learning rate of 0.00005, and a big batch size of 1024 samples 

was used for better generalization capability and higher 

precision. 

We trained OdoNet for 1000 epochs, costing 7 seconds for 

each epoch. We also trained a two-layer LSTM network and a 

two-layer Bi-LSTM network. The LSTM-based network and 

Bi-LSTM-based network have the same structures as the 

OdoNet, except the four-layer 1D CNN network. Each layer of 

the LSTM has 128 nodes, and each layer of the Bi-LSTM has 

64 nodes. As depicted in Fig. 6, the validation loss of the 

OdoNet converged rapidly with satisfying precision. In contrast, 

the two-layer LSTM network and the two-layer Bi-LSTM have 

lower convergence speed and precision, even if we have used a 

larger learning rate of 0.001. In addition, the LSTM and 

Bi-LSTM consumed much more computational resources, 

which led to longer training and predicting time. More 

specifically, the two-layer LSTM network took about 4 times as 

much time as the OdoNet for each epoch during training, and 

the value for the two-layer Bi-LSTM was about 8 times. All the 

above experiment results demonstrate that our CNN-based 

OdoNet has better performance with higher efficiency, 

compared to the RNN-based networks. 

C. Regressed Speed Evaluation 

1) Raw Regressed Speed on Testing Dataset 

With well-trained OdoNet, we evaluated the regressed speed 

 
Fig. 5. The distributions of the speed on training and testing dataset. 

 
Fig. 6. The validation loss of the OdoNet and other two networks during the 

training. The loss is in log scale. The Bi-LSTM based network and LSTM based 

network have the same structures with OdoNet, except the four-layer 1D CNN 
network. Each layer of the Bi-LSTM has 64 nodes, and each layer of the LSTM 
has 128 nodes. 

 
Fig. 3. Photograph of the test vehicle and system setup inside and outside the 
vehicle. 

  
Fig. 4. The trajectory of the collected dataset. The green dots denote the testing 
dataset, while the red dots denote the training dataset. The map is generated by 

Google Earth. 

Authorized licensed use limited to: Wuhan University. Downloaded on April 26,2022 at 11:57:49 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3169549, IEEE Sensors
Journal

Hailiang Tang et al.: OdoNet: Untethered Speed Aiding for Vehicle Navigation Without Hardware Wheeled Odometer 7 

 

 

on the testing dataset. The errors of the regressed speed are 

shown in Fig. 7, where the first subplot depicts the distribution 

of the regressed errors, and the second subplot depicts the 

cumulative distribution function of the speed errors. As we can 

see, 90% of the regressed speed error are less than 0.699 m/s, 

and 95% of them are less than 0.943 m/s. 

More specifically, the Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE) of the regressed speed are listed in 

Table Ⅰ. The MAE and RMSE on the overall testing dataset are 

0.315 m/s and 0.490 m/s respectively in a range of 0-25 m/s. 

However, we cannot ignore the fact that the precision of the 

OdoNet degrades seriously when the speed is higher than 20 

m/s, which can be seen in both Fig. 7 and Table Ⅰ. According to 

our analysis, lacking enough high-speed samples is the main 

reason. As depicted in Fig. 5, the samples of speeds higher than 

20 m/s are less than 2%. Adding more high-speed samples 

should be able to solve this issue. The scenes where the vehicle 

can travel at a high speed of more than 20 m/s are generally 

wide roads away from tall buildings, e.g. highway, open-sky 

environments specifically. In general, GNSS can attain 

high-accuracy RTK positioning in such open-sky areas, and 

thus these low-precision regressed speeds should have a limited 

impact on the final results of the integrated navigation system 

or be eliminated by the gross error detection algorithm (13). 
2) Regressed Speed Sequences on Testing Sequences 

For each 50 consecutive IMU samples, the OdoNet can 

predict a corresponding vehicle speed, and thus we can attain 

speed with an update rate of 50 Hz. The speed sequence is then 

filtered by the FIR low-pass filter. The testing dataset consists 

of two INS-Probe modules with 4 different sequences, 

including three sequences in different speed scenes and one 

sequence for robustness testing. These three scenes are 

mentioned in Ⅳ. A, and the details of these scenes can refer to 

Ⅳ. E. The RMSE of the raw regressed speed and filtered speed 

are shown in Table Ⅱ, which shows great consistency between 

these two individual IMU. However, the RMSE of the 

regressed speed in the high-speed scene is much larger than the 

other two scenes, which corresponds to the previous results in 

Table Ⅰ. 
3) Zero Velocity Detection on Testing Dataset 

We also evaluated the performance of the zero-velocity 

detector. We used (5) to generate the ground truth of the 

zero-velocity states from the real wheeled odometer. The 

evaluation metrics for binary classification on the testing 

dataset are shown in Table Ⅲ. The precision and recall are 

95.33% and 99.05% respectively, which illustrates that the 

false-alarm rate is slightly larger than the missed-detection rate. 

The results are reasonable because the regressed speeds are 

mixed with gross errors. ZUPT and ZARU are extremely 

important in some scenes because they can improve the 

precision and stability of the integrated system effectively. 

Moreover, a false alarm of zero velocity might be eliminated by 

the fault-detection model in (13). In other words, the results of 

the zero-velocity detector are acceptable. 

D. Robustness Evaluation 

In previous section, we evaluate the regressed speed metrics, 

and the results illustrate that the raw regressed speed on the 

testing dataset is less than 0.5 m/s in a wide dynamic range of 

0-25 m/s. However, the most common challenges for 

deep-learning network are the robustness and the generalization 

capability, which determine their usability in more general 

scenes. In this section, we evaluate some common factors that 

might affect the robustness of OdoNet, including the 

compensation of the IMU biases and the mounting angles, the 

vehicle loads, and the road conditions. Previous experiments 

have demonstrated that the IMU individuality has little impact 

on the robustness and precision of the OdoNet, so it will not be 

evaluated repeatedly. The M1 and M2 mentioned below 

represent the two INS-Probe modules in the testing dataset. 

TABLE I 
THE ERROR OF REGRESSED SPEED ON TESTING DATASET 

Velocity 

[m/s] 
0-5 5-10 10-15 15-20 20-25 Overall 

MAE 
[m/s] 

0.300 0.253 0.294 0.397 1.070 0.315 

RMSE 

[m/s] 
0.534 0.391 0.419 0.520 1.337 0.490 

 

TABLE Ⅱ 
RMSE OF THE SPEED SEQUENCES IN THREE SCENES 

Scene 

M1 M2 

Raw 

[m/s] 

Filtered 

[m/s] 

Raw 

[m/s] 

Filtered 

[m/s] 

Low Speed 0.457 0.339 0.449 0.329 

Median Speed 0.381 0.240 0.374 0.249 

High Speed 0.618 0.486 0.594 0.449 

M1 and M2 represents two different INS-Probe modules in the testing dataset. 
Raw denotes the raw regressed speed, and filtered denotes the filtered speed. 

TABLE Ⅲ 
RESULTS OF ZERO VELOCITY DETECTION USING REGRESSED SPEED 

Metrics Value Metrics Value 

True Positive 3636 False Positive 178 

True Negative 52895 False Negative 35 

Precision 95.33% Recall 99.05% 

 

 
Fig. 7. The distributions of the error of regressed speed and the cumulative 
distribution function on the testing dataset. 
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1) Impact of Compensation 

In the data-cleaning procedure, the IMU biases and the 

mounting angles are precisely compensated. In this section, 

experiments will be conducted to demonstrate the impacts of 

the IMU biases and the mounting angles. 

The biases of a single IMU are unique and different from 

each other, so we trained and tested the OdoNet with raw IMU 

samples (without compensating for the biases) to evaluate their 

impacts. We compared the RMSE of the filtered regressed 

speed of two different models in three testing scenes, as 

depicted in Fig. 8. The impacts on M1 and M2 are completely 

different. The uncompensated model has little impact on the 

precision of the M1, and the RMSE increase by less than 10%. 

However, the precision of M2 on uncompensated models 

degrades as much as 45%. A possible explanation might be the 

insufficient IMU individuality in the training dataset, which is 

uncontrollable due to the uncertainty of the IMU biases. In 

contrast, it is convenient to attain IMU biases from the 

integrated navigation system online. Hence, training with 

biases calibrated IMU data makes the OdoNet more robust and 

more precise. 

The mounting angles of the IMU in our dataset are small, and 

each axis is less than 2° typically (according to the estimated 

results), mainly because the IMU is mounted aligning to the 

vehicle. We only considered small mounting angles here, and 

the large mounting angles could be compensated in advance. 

Consequently, we manually added extra mounting angles to the 

IMU samples, which means that we rotated the IMU samples 

with different mounting angles, and evaluated the RMSE of the 

regressed speed. The data in the median-speed scene is used in 

this test. As we can see in Fig. 9, the pitch and heading 

mounting angles have a completely different impact on the 

precision of the regressed speed. The impact of the pitch 

mounting angle is much larger than the heading mounting angle. 

If 0.4 m/s is the acceptable precision, the tolerable pitch 

mounting angle is about 2°, while the tolerable heading 

mounting angle is about 12°. It can be explained that the 

acceleration is directly related to the vehicle speed, and the 

pitch mounting angle might lead to the change of the gravity 

component on different axes of the accelerometer. The error of 

the estimated pitch mounting angle is typically within 0.005° 

[26] for low cost MEMS IMU, while the error of the estimated 

heading mounting angle is much larger. As long as the accuracy 

of the estimated mounting angles is within 2°, the OdoNet is 

capable of adapting these factors easily and maintains 

reasonable accuracy of the regressed speed. 
2) Impact of Vehicle Loads 

Different loads might affect the dynamic characteristics of 

the vehicle in some cases, and thus the vehicle loads might 

affect the precision of OdoNet to some extent. A special 

experiment was carried out to evaluate the impact of the vehicle 

loads. We drove the vehicle on the same road on a round trip 

with different loads (i.e. with a different number of passengers), 

and the length of the road was about 6 km. Three tests were 

conducted, and the number of passengers was two, three, and 

 
Fig. 8. The RMSE of the filtered speed using compensated model and 

uncompensated model. The circle represents the speed RMSE, while the square 

represents the degradation rate. Com denotes that all the IMU sequences are 
well compensated in training and testing, while Uncom denotes no 

compensation. The degradation rate is defined as (Uncom-Com)/Com. The 

uncompensation is only for the IMU biases, and the mounting angles are 

compensated for all sequences in this test. 

  
Fig. 9. The RMSE of the filtered speed with the change of mounting angles in 

the median-speed scene. We evaluated pitch and heading mounting angles 

separately. The pitch mounting angle  and the heading mounting angle 

 can be converted to direction cosine matrix  [26], as mentioned in 

III.B. 

TABLE Ⅳ 
RMSE OF THE SPEED SEQUENCES WITH DIFFERENT VEHICLE LOADS 

Loads 

M1 M2 

Raw 
[m/s] 

Filtered 
[m/s] 

Raw 
[m/s] 

Filtered 
[m/s] 

Two People 0.389 0.259 0.441 0.296 

Three People 0.423 0.304 0.443 0.307 

Four People 0.410 0.260 0.472 0.311 

 

TABLE Ⅴ 
RMSE OF THE SPEED SEQUENCES IN NEW SCENES 

Sequences 
Raw 

[m/s] 

Filtered 

[m/s] 

Seq. 1 0.472 0.336 

Seq. 2 0.443 0.333 

Seq. 3 0.377 0.277 

Seq. n denotes different test sequences. 
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four, respectively. The RMSE of the regressed speed in each 

test is displayed in Table Ⅳ. No notable difference is found 

between these three tests, not only from the raw-speed error but 

also from the filtered-speed error, which illustrates that the 

impact of the vehicle loads is negligible. 
3) Impact of Road Conditions 

It is obvious that different road conditions might affect the 

motion of the vehicle, and thus might affect the precision of the 

OdoNet. Even though our dataset has covered various roads in 

Wuhan city, we should evaluate the OdoNet with data collected 

in totally new scenes. Three new IMU sequences were used in 

this test. These testing sequences were collected in a totally 

strange scene by a new IMU, specifically, another industrial 

district in Wuhan city. As shown in Table Ⅴ, the RMSE of the 

regressed vehicle speed on these three sequences are very close, 

mainly because of the same testing scene. Moreover, the results 

show nearly the same accuracy compared to previous results in 

Table Ⅱ, which demonstrates the superior generalization 

capability of the OdoNet to different road conditions. Moreover, 

the experiment results illustrate that the OdoNet is robust to 

different IMU individuality once again. 

E. Navigation Results 

In this part, we will present the results of the GNSS/INS 

integrated navigation using three different aiding modes, 

including the NHC-only, the pseudo-odometer aiding, and the 

wheeled odometer aiding. By comparing the navigation results 

of these three processing modes, we can judge the precision of 

our proposed method. When applying odometer aiding, NHC is 

always applied simultaneously. The difference between the 

NHC-only mode and the odometer mode is mainly in the 

forward direction of the vehicle instead of the lateral and 

vertical direction, and thus the horizontal error is adopted to 

evaluate the positioning accuracy in the following sections. 

In addition, ZUPT and ZARU are used only when the 

odometer is used, because the zero-velocity state is determined 

by the odometer speed. The standard deviation of 

pseudo-odometer observation is set to 0.3 m/s, according to the 

RMSE of the filtered speed in Table Ⅱ, while 0.1 m/s for real 

wheeled odometer according to its actual precision, as 

mentioned in III.C. The GNSS positioning used in the 

experiments were derived from ZED-F9P working in Real 

Time Kinematic (RTK) mode. Only fixed solutions were 

employed in the integrated navigation system to ensure the 

quality of the GNSS positioning. 
1) Low-speed Scene 

Due to narrow roads and complex traffic conditions, the 

vehicle traveled very slowly around the university campus. In 

this low-speed scene, there was intensive coverage of tall trees 

along the roads, which led to long GNSS outages occasionally. 

The longest three GNSS outages lasted 36, 56, and 131 seconds, 

respectively. Fig. 10 shows the filtered regressed speeds of M1 

and their error. As we can see, the highest speed is only about 

10 m/s, and most of the filtered speeds are precise, except for 

some gross error exceeding 1 m/s. 

Fig. 11 shows the cumulative distribution function (CDF) of 

the two testing modules with three processing modes. Due to 

higher precision, the wheeled odometer improves the precision 

of navigation significantly. The pseudo-odometer also shows 

great improvement compared to the NHC-only mode. The 

precision of the pseudo-odometer is extremely close to the real 

wheeled odometer in this low-speed scene. However, as we can 

see, the pseudo-odometer only takes effects during long GNSS 

outages, which means that the integrated navigation system 

might have a large drift without pseudo-odometer aiding. The 

most important thing is to reduce large drift in vehicle 

navigation, and the pseudo-odometer and the wheeled 

odometer can play the same role on this issue. 
2) High-speed Scene 

The high-speed scene is the Second Ring Road of Wuhan 

city, without any traffic light. There are four long tunnels 

during the travels, with some other GNSS-challenged 

environments. The longest three GNSS outages lasted 73, 80, 

and 156 seconds, respectively. The filtered regressed speed and 

its error are shown in Fig. 12. The vehicle traveled at a very 

high speed, except when traffic jams occurred. As mentioned in 

Ⅳ. C, the OdoNet shows poor precision when the speed 

exceeds 20 m/s; the regressed speed contains a large error at 

446000s in Fig. 12, for example. Besides, the RMSE of both the 

raw and the filtered speed in the high-speed scene are larger 

than that of the other two scenes, as can be seen in Table Ⅱ.  

Fig. 13 shows the CDF of the horizontal error in the 

high-speed scene. The pseudo-odometer still outperforms the 

NHC-only mode, but cannot achieve the precision as the same 

as the real wheeled odometer. However, the pseudo-odometer 

 
Fig. 10. The filtered regressed speed of the testing M1 and its error in the 

low-speed testing scene. 

 
Fig. 11. The cumulative distribution function of horizontal error in the 

low-speed testing scene. The M1 and M2 represents two different INS-Probe 

modules in testing dataset. The Odo denotes the wheeled odometer aiding. The 
Pseudo Odo denotes the pseudo-odometer aiding from OdoNet. 
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shows outstanding performance in reducing large drifts. As 

depicted in Fig. 13, 100% of the error is less than 17 m after 

applying the pseudo-odometer aiding or the wheeled odometer 

aiding. However, if only the NHC is used, the maximum error 

is far larger than 20 m when the vehicle travels through the long 

tunnels, where GNSS tends to have long outages. All in all, the 

pseudo-odometer and the wheeled odometer almost make the 

same contribution to reducing large positioning drifts. 
3) Median-speed Scene 

This scene is located in an industrial district of Wuhan city, 

with no tall buildings and few other vehicles. We drove the 

vehicle back and forth on these roads, and we often had to stop 

at the crossroads waiting for the traffic lights. As depicted in 

Fig. 14, the vehicle traveled steadily, without violent motions, 

either running around a fixed speed or staying stationary. The 

error of the filtered regressed speed is extremely small. The 

RMSE of the filtered speed is only 0.240 m/s and 0.249 m/s for 

the two testing modules respectively, which outperforms that in 

the other two scenes. 

This scene is an open-sky environment, and thus GNSS can 

always achieve centimeter-level positioning. In this scene, we 

evaluated the performance of the integrated system by mimic 

GNSS outages [31]. We interrupted the GNSS positioning 

update in EKF for 60 seconds with a period of 180 seconds. 

During each outage, we picked up the maximum horizontal 

positioning error and then calculated the RMS of all the 

maximum errors in each outage. Three tests were conducted 

with a different start time of the outages. Table Ⅵ shows the 

experiment results of these two testing modules in three 

processing modes. As we can see, compared to the NHC-only 

mode, the pseudo-odometer significantly improves the 

precision of the positioning, and the RMSE are reduced by 

66.4% and 69.4% for the two testing modules respectively. In 

fact, ZUPT and ZARU also make contributions to the 

improvement, which benefits from the reliable and effective 

zero-velocity detector using the pseudo-odometer speed.  

The experiment results in the median-speed scene are 

statistically significant, and thus we can obtain quantitative 

conclusions. More specifically, the RMSE of the two testing 

modules are listed in Table Ⅶ. Compared to the NHC-only 

mode, by using the pseudo-odometer, the horizontal error is 

reduced by about 68%, while the percentage for the wheeled 

 
Fig. 14. The filtered regressed speed of the testing M1 and its error in the 
median-speed testing scene. 

TABLE Ⅶ 
THE RMS OF HORIZONTAL ERROR FOR TWO MODULES 

Module M1 [m] M2 [m] 
RMS of M1 

and M2 [m] 

Percentage 

[%] 

NHC 12.090 12.518 12.306 - 

Pseudo Odo 4.061 3.827 3.946 68% 

Odo 3.111 3.172 3.142 74% 

The percentages represent the percent reduction of the RMSE compared to the 

NHC-only mode. 

TABLE Ⅵ 
THE RMS OF HORIZONTAL ERROR DURING MIMIC GNSS OUTAGES 

Module Aiding Seq. 1 [m] Seq. 2 [m] Seq. 3 [m] RMS [m] 

M1 

NHC 15.624 8.974 10.669 12.090 

Pseudo Odo 5.151 3.024 3.713 4.061 

Odo 4.018 2.273 2.780 3.111 

M2 

NHC 11.351 8.572 16.364 12.518 

Pseudo Odo 3.567 3.894 4.005 3.827 

Odo 3.367 2.752 3.359 3.172 

Seq. n denotes three different outage sequences, which means that outages have 

different start time. Seq. 1 and Seq. 2 each has 13 outages, and Seq. 3 has 12 

outages. The length of each GNSS outage is 60 seconds. The last column 

represents the RMS of the results of the three sequences. 

 
Fig. 13. The cumulative distribution function of horizontal error in the 

high-speed testing scene. 

 
Fig. 12. The filtered regressed speed of the testing M1 and its error in the 
high-speed testing scene. 
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odometer is about 74%. The pseudo-odometer and the wheeled 

odometer almost yield the same accuracy. Consequently, the 

proposed pseudo-odometer can act as an alternative to the real 

wheeled odometer. 

V. CONCLUSIONS 

In this paper, we propose OdoNet, an untethered CNN-based 

deep pseudo-odometer model for vehicle GNSS/INS integrated 

navigation system, which is applicable for common navigation 

devices and even smartphones. Dedicated experiment results 

demonstrate that the OdoNet is robust enough to adapt to 

various changing conditions, including the IMU individuality, 

the vehicle loads, and the road conditions, while the IMU biases 

and the mounting angles can be compensated in data-cleaning 

procedure to mitigate their impacts. Navigation results indicate 

that by using the pseudo-odometer, the horizontal positioning 

error (60-second GNSS outages) is reduced by around 68% 

(compared to the NHC-only mode), which is very close to that 

of the hardware wheeled odometer. In conclusion, the proposed 

pseudo-odometer can significantly improve the robustness and 

accuracy of the integrated navigation system, and it is a reliable 

alternative to the hardware wheeled odometer. 

VI. ACKNOWLEDGEMENT 

This research is funded by the National Key Research and 

Development Program of China (No. 2020YFB0505803), and 

the National Natural Science Foundation of China (No. 

41974024). The authors would also like to thank Dr. Xin Feng 

in our group for proofreading the paper. 

REFERENCES 

[1] I. Skog, P. Handel, J. O. Nilsson, and J. Rantakokko, “ Zero-Velocity 

Detection—An Algorithm Evaluation,”  IEEE Trans. Biomed. Eng., vo

l. 57, no. 11, pp. 2657–2666, Nov. 2010. 

[2] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte, “The 

aiding of a low-cost strapdown inertial measurement unit using vehicle 

model constraints for land vehicle applications,” IEEE Trans. Robot. 

Automat., vol. 17, no. 5, pp. 731–747, Oct. 2001. 

[3] X. Niu, Y. Li, Q. Zhang, Y. Cheng, and C. Shi, “Observability Analysis 

of Non-Holonomic Constraints for Land-Vehicle Navigation Systems,” 

JGPS, vol. 11, no. 1, pp. 80–88, Jun. 2012. 

[4] X. Niu, S. Nassar, and N. EL-SHEIMY, “An Accurate Land-Vehicle 

MEMS IMU/GPS Navigation System Using 3D Auxiliary Velocity 

Updates,” Navigation, vol. 54, no. 3, pp. 177–188, 2007. 

[5] X. Yu et al., “AZUPT: Adaptive Zero Velocity Update Based on Neural 

Networks for Pedestrian Tracking, ”  in 2019 IEEE Global 

Communications Conference (GLOBECOM), 2019, pp. 1–6. 

[6] B. Wagstaff and J. Kelly, “LSTM-Based Zero-Velocity Detection for 

Robust Inertial Navigation,” 2018 International Conference on Indoor 

Positioning and Indoor Navigation (IPIN), pp. 1–8, Sep. 2018. 

[7] B. Wagstaff, V. Peretroukhin, and J. Kelly, “Robust Data-Driven 

Zero-Velocity Detection for Foot-Mounted Inertial Navigation,” IEEE 

Sensors J., vol. 20, no. 2, pp. 957–967, Jan. 2020. 

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural 

Comput., vol. 9, no. 8, pp. 1735–1780, 1997. 

[9] Brossard, Martin, Axel Barrau, and Silvere Bonnabel. "RINS-W: Robust 
inertial navigation system on wheels," 2019 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), 2019. 

[10] S. Cortés, A. Solin, and J. Kannala, “DEEP LEARNING BASED 

SPEED ESTIMATION FOR CONSTRAINING STRAPDOWN 

INERTIAL NAVIGATION ON SMARTPHONES,” in 2018 IEEE 28th 

International Workshop on Machine Learning for Signal Processing 

(MLSP), Sep. 2018, pp. 1–6. 

[11] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU Double 

Integration,” in Computer Vision – ECCV 2018, Cham, 2018, vol. 

11217, pp. 641–656. 

[12] T. Feigl, S. Kram, P. Woller, R. H. Siddiqui, M. Philippsen, and C. 

Mutschler, “A Bidirectional LSTM for Estimating Dynamic Human 

Velocities from a Single IMU,” in 2019 International Conference on 

Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, Sep. 2019, 

pp. 1–8. 

[13] T. Feigl, S. Kram, P. Woller, R. H. Siddiqui, M. Philippsen, and C. 

Mutschler, “RNN-Aided Human Velocity Estimation from a Single 

IMU,” Sensors, vol. 20, no. 13, p. 3656, Jun. 2020. 

[14] Chen, Changhao, et al. "Ionet: Learning to cure the curse of drift in 

inertial odometry," Proceedings of the AAAI Conference on Artificial 

Intelligence. Vol. 32. No. 1, 2018. 
[15] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni, 

“OxIOD: The Dataset for Deep Inertial Odometry,” arXiv:1809.07491 

[cs], Sep. 2018. 
[16] Herath, Sachini, Hang Yan, and Yasutaka Furukawa. "RoNIN: Robust 

Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New 

Methods," 2020 IEEE International Conference on Robotics and 
Automation (ICRA), 2020. 

[17] M. Abolfazli Esfahani, H. Wang, K. Wu, and S. Yuan, “AbolDeepIO: A 

Novel Deep Inertial Odometry Network for Autonomous Vehicles,” 

IEEE Trans. Intell. Transport. Syst., vol. 21, no. 5, pp. 1941–1950, May 

2020. 

[18] J. P. Silva do Monte Lima, H. Uchiyama, and R. Taniguchi, “End-to-End 

Learning Framework for IMU-Based 6-DOF Odometry,” Sensors, vol. 

19, no. 17, p. 3777, Aug. 2019. 

[19] Clark, Ronald, et al. "Vinet: Visual-inertial odometry as a 
sequence-to-sequence learning problem," Proceedings of the AAAI 

Conference on Artificial Intelligence. Vol. 31. No. 1, 2017. 

[20] Shamwell, E. Jared, Sarah Leung, and William D. Nothwang. 
"Vision-aided absolute trajectory estimation using an unsupervised deep 

network with online error correction," 2018 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), 2018. 

[21] E. J. Shamwell, K. Lindgren, S. Leung, and W. D. Nothwang, 

“Unsupervised Deep Visual-Inertial Odometry with Online Error 

Correction for RGB-D Imagery,” IEEE Trans. Pattern Anal. Mach. Intell., 
pp. 1–1, 2020. 

[22] Han, Liming, et al. "Deepvio: Self-supervised deep learning of 

monocular visual inertial odometry using 3d geometric constraints," 
2019 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS), 2019. 

[23] Velas, Martin, et al. "CNN for IMU assisted odometry estimation using 
velodyne LiDAR," 2018 IEEE International Conference on Autonomous 

Robot Systems and Competitions (ICARSC), 2018. 

[24] C. Li, S. Wang, Y. Zhuang, and F. Yan, “Deep Sensor Fusion between 

2D Laser Scanner and IMU for Mobile Robot Localization,” IEEE 

Sensors J., pp. 1–1, 2020. 

[25] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “OriNet: Robust 3-D 

Orientation Estimation With a Single Particular IMU,” IEEE Robot. 
Autom. Lett., vol. 5, no. 2, pp. 399–406, Apr. 2020. 

[26] Q. Chen, Q. Zhang, and X. Niu, “Estimate the Pitch and Heading 

Mounting Angles of the IMU for Land Vehicular GNSS/INS Integrated 

System,” IEEE Trans. Intell. Transport. Syst., pp. 1–13, 2020. 

[27] E.-H. Shin, “Estimation techniques for low-cost inertial navigation,”
Ph.D. dissertation, Dept. Geomatics Eng., Univ. Calgary, Calgary, AB, 

Canada, 2005. 
[28] D. Groves, Principles of GNSS, Inertial and Multisensor Navigation 

Systems. London, U.K.,: Artech House, 2008. 

[29] A. LeNail, “NN-SVG: Publication-Ready Neural Network Architecture 

Schematics,” JOSS, vol. 4, no. 33, p. 747, Jan. 2019. 

[30] D. P. Kingma and J. Ba, “ Adam: A Method for Stochastic 

Optimization,” arXiv:1412.6980 [cs], Jan. 2017. 

[31] Xiaoji Niu, C. Goodall, S. Nassar, and N. El-Sheimy, “An Efficient 

Method for Evaluating the Performance of MEMS IMUs,” in 2006 

IEEE/ION Position, Location, And Navigation Symposium, Coronado, 

CA, 2006, pp. 766–771. 

Authorized licensed use limited to: Wuhan University. Downloaded on April 26,2022 at 11:57:49 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3169549, IEEE Sensors
Journal

12  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

[32] Ramachandran P, Zoph B, Le Q V, “Searching for activation functions”. 
arXiv preprint arXiv:1710.05941 [cs], 2017. 

[33] L. Chang, X. Niu, and T. Liu, “GNSS/IMU/ODO/LiDAR-SLAM 

Integrated Navigation System Using IMU/ODO Pre-Integration,” 
Sensors, vol. 20, no. 17, p. 4702, Aug. 2020. 

 
 

Hailiang Tang received the B.E. and M.E. degrees 
from Wuhan University, China, in 2017 and 2020, 
respectively. He is currently pursuing the Ph.D. 
degree in communication and information system 
with the GNSS Research Center, Wuhan University. 
His current research interests include GNSS/INS 
integration, deep learning, visual SLAM, and 
autonomous robotics system. 
 
 

 
 

Xiaoji Niu received his bachelor’s and Ph.D. 
degrees from the Department of Precision 
Instruments, Tsinghua University, in 1997 and 
2002, respectively. He is currently a Professor with 
the GNSS Research Center, Wuhan University, 
China. He did post-doctoral research with the 
University of Calgary and worked as a Senior 
Scientist in SiRF Technology Inc. He has 
published more than 90 academic papers and own 
28 patents. He leads a multi-sensor navigation 

group focusing on GNSS/INS integration, low-cost navigation sensor 
fusion, and its new applications. 
 
 

Tisheng Zhang is an associate professor in GNSS 
Research Center at Wuhan University, China. He 
holds a B.SC. and a Ph.D. in Communication and 
Information System from Wuhan University, Wuhan, 
China, in 2008 and 2013, respectively. From 2018 to 
2019, he was a PostDoctor of the HongKong 
Polytechnic University. His research interests focus 
on the fields of GNSS receiver and multi-sensor 
deep integration. 
 

 
 

You Li is a Professor at the State Key Laboratory 
of Information Engineering in Surveying, Mapping 
and Remote Sensing (LIESMARS), Wuhan 
University, China. He received Ph.D. degrees from 
Wuhan University and University of Calgary in 
2015 and 2016, respectively, and a BEng degree 
from China University of Geoscience (Beijing) in 
2009. His research focuses on positioning and 
motion-tracking techniques and their uses in IoT 
devices, smartphones, robots, and cars. He has 

hosted/participated in five national research projects, and co-published 
over 70 academic papers, and has over 20 patents pending. He serves 
as an Associate Editor for the IEEE Sensors Journal, a committee 
member at the IAG unmanned navigation system and ISPRS mobile 
mapping working groups. 
 
 

Jingnan Liu, member of Chinese Academy of 
Engineering, professor, Ph. D supervisor. He is an 
expert in geodesy and surveying engineering with 
the specialty of GNSS technology and applications. 
He has been engaged in the research of geodetic 
theories and applications, including national 
coordinate system establishment, GNSS 
technology and software development, as well as 
large project implementation. Over the past few 
decades, he has been engaged in the research of 

geodetic theories and applications. And so far he has published more 
than 150 academic papers and supervised more than 100 
postgraduates. 

Authorized licensed use limited to: Wuhan University. Downloaded on April 26,2022 at 11:57:49 UTC from IEEE Xplore.  Restrictions apply. 


