
 

 

 Abstract—Accurate floor identification within multi-story 
buildings is crucial for guiding pedestrians to their 
destinations in complex door environments like shopping 
centers, airports and office buildings. Current floor 
identification methods primarily rely on barometers or 
wireless signals, which are susceptible to environmental 
influences or require extensive maintenance. This paper 
proposes an innovative method for floor identification by 
estimating pedestrian height using the built-in inertial 
measurement unit (IMU) of smartphones. By analyzing 
pedestrian motion in elevator and escalator scenarios, distinct 
pedestrian motion constraints are derived. An inertial 
navigation system (INS) framework is employed, which 
utilizes an extended Kalman Filter (EKF) to integrate these 
constraints and estimate height changes as pedestrians 
transition between floors. The method includes detailed 
motion modeling, taking into account the distinct patterns in 
elevators and escalators. The proposed algorithm is validated through multiple experiments in a typical shopping 
mall, demonstrating significant accuracy enhancements with relative height errors of 2.98% (up) and 1.45% (down) 
in elevator scenarios, and 3.50% (up) and 7.97% (down) in escalator scenarios. This indicates a substantial 
improvement over existing techniques. Notably, the method does not rely on barometric sensors or prior signal 
fingerprint databases, highlighting its potential universality across common mobile devices. 

 
Index Terms—Indoor Positioning, Floor Identification, Smartphone, IMU, Pedestrian Motion Constraint. 

 

 

I. Introduction 

eliable and precise positioning is the guarantee of  

Location-Based Services (LBS)[1], [2]. In indoor 

environments, identifying the specific floor where 

pedestrians are located is crucial for achieving accurate 

indoor positioning[3], [4]. In emergency rescue scenarios, 

such as fires and natural disasters, precise floor information 

can significantly expedite rescue efforts[5], [6]. 

Consequently, indoor positioning systems must provide both 

horizontal and vertical location information (floor 

information). This capability is vital for enhancing safety, 

commercial value, and user satisfaction. Meanwhile, given 

the widespread use of smartphones and the multitude of 

built-in sensors, current pedestrian positioning methods 

based on smartphones can also be extended to include floor 

identification[7]. 

Nowadays, extensive research has been conducted on 

methods for floor identification in indoor positioning, which 

can be classified into two categories based on their reliance 

on prior information: fingerprint matching based methods 

and height estimation based methods. Among these, Wi-Fi, 

cellular networks, and magnetic fields are commonly used 

signals for fingerprint matching schemes. Barometers and 

IMUs are typical sensors for height measurement schemes. 

Inertial sensors are capable of detecting acceleration 

changes in a pedestrian’s upward and downward motion. By 

integrating the vertical acceleration over time, it is possible 

to calculate changes in vertical velocity and subsequently 

changes in vertical position (i.e. displacement), which can be 

used to identify floors. For pedestrians, the main scenarios 

for floor transitions include stairs, elevators and escalators. 

In stair scenarios, pedestrian movement characteristics are 

relatively abundant, making it easier to obtain vertical 

velocity. However, there are fewer pedestrian movement 

characteristics in elevator and escalator scenarios. Thus, 

height estimation using inertial sensors in these two 

scenarios is challenging. 

For pedestrian height estimation using inertial sensors, the 

essential problem is the rapid drift of the INS positioning due 

to low-grade sensors. The key solution is to mitigate such 

drift, especially in the vertical direction. In this paper, we 

explore the feasibility of utilizing inertial sensors in 

smartphones to analyze pedestrian motion characteristics in 

elevator and escalator scenarios. For pedestrians, it is 

typically assumed that they access a building from the first 

floor. Floor identification is achievable by estimating the 

height change from the initial point to the current position. 

This study proposes a pedestrian floor identification 
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method based on inertial sensors in smartphones, offering a 

solution for pedestrian height estimation in elevator and 

escalator scenarios. We assume the starting floor of the 

pedestrian is known, and estimating height variations 

enables the identification of subsequent floors. We derive 

distinct pedestrian motion constraints by analyzing the 

pedestrian motion in these two scenarios. Then, we employ 

the INS framework, integrating the pedestrian motion 

constraint information using the Extended Kalman Filter 

(EKF). This solution employs only inertial sensors and 

pedestrian motion characteristics, ensuring it is self-

contained, robust, and reliable. 

The remaining parts of this paper is organized as follows. 

Section II summarizes related previous works. Section III 

describes characteristic analysis in elevator and escalator 

scenarios. Section IV presents the system algorithm 

framework and corresponding methods. Section V discusses 

the experimental setting and results. Finally, the conclusion 

and outlook are provided in Section VI. 

II. Related Work 

In this section, we summarize the previous related work 

on floor identification. Based on whether prior information 

is required, current work can be divided into two categories: 

fingerprint matching based method and height estimation 

based methods. 

A. Fingerprint matching based Methods 

Fingerprint matching based floor identification methods 

primarily involve utilizing the difference in signal strength 

between different floors for floor identification[8]. Wi-Fi 

and cellular networks are popular wireless signals used for 

this purpose, as they are widely available in buildings and 

can provide information about the floor where a device is 

located. Fingerprint matching methods are primarily 

categorized into statistical-based and machine learning-

based methods. Some researchers utilized statistical-based 

methods for floor identification, such as K-Means 

clustering[9], Linear Discriminant Analysis[10], Fisher’s 

Linear Discriminant[11] and particle filtering[12]. Currently, 

with the advancement of artificial intelligence, machine 

learning-based methods have become the mainstream 

research direction in floor identification due to their high 

accuracy and robustness. Various machine learning models, 

such as K-Nearest Neighbors[13], Naive Bayes[14], 

clustering[15], Auto-Encoder[16],Multilayer Perceptron[17], 

convolutional neural networks[18], [19] and Long Short-

Term Memory neural networks[20] have been explored for 

floor identification. Additionally, barometer and 

accelerometer measurements are integrated with wireless 

signals to assist in floor recognition. Ye utilized the 

accelerometer’s capability to capture device motion patterns 

and changes, coupling it with Wi-Fi signals[21]. Models 

such as Bar-Fi[22], Hy-Rise[23], Zee-Fi[6] combine  

barometric measurements with Wi-Fi for floor identification.  

Meanwhile, due to the temporal stability and spatial 

distinguishability of magnetic signals[24], the magnetic 

signals can also be used for floor identification. Zhao utilized 

the Euclidean closest approximation and majority principle 

to identify floor[25]. Ashraf used a naive Bayes classifier 

algorithm to determine user’s activities, and then matched 

the magnetic field data with the magnetic field database to 

estimate floor[26].  

Although these fingerprint matching methods offer higher 

precision in floor identification, they require large 

fingerprint databases and infrastructure deployment, 

entailing limitations and high maintenance costs. 

B. Height Estimation based Methods 

The floor identification methods based on height 

estimation primarily utilize height measurement sensors to 

track changes in user’s height and infer the floor[27]. 

Barometers and inertial sensors are commonly employed for 

this purpose. Barometers gauge height changes by 

measuring atmospheric pressure variations, which decrease 

as elevation increases[3], [28]. Several studies have focused 

on using barometers to measure height variation for floor 

identification. Shin compensated for barometers bias by sea-

level pressure and calculated elevation information by 

barometric height conversion formula[29]. Zhao assumed 

atmospheric parameters and converted the measured 

atmospheric pressure to height using the barometric 

equation[30]. However, the accuracy of height estimation is 

influenced by environmental factors such as temperature and 

humidity[31]. Additionally, in this paper, we conducted a 

survey of the built-in sensors in common smartphones 

during recent years, including Apple, Huawei, Samsung, 

Xiaomi and other major brands, totaling 100 smartphone 

models. Survey suggested that only 34 of these smartphones 

have built-in barometers. For most of smartphones without 

barometers, the height estimation methods based on 

barometers still cannot address the requirements of floor 

identification. 

Devices used for height estimation with inertial sensors 

include mobile phones and wearable inertial modules. Ye 

proposed F-Track, which leverages a mobile phone’s 

accelerometer to identify the pedestrian’s current floor levels 

by mapping traveling time in elevators or step counts on 

stairs to floor levels[32]. Li introduced a moving platform 

correction model to achieve position tracking during rides on 

elevators or escalators based on inertial sensor modules[33]. 

Most research on floor identification using inertial sensors 

focuses on scenarios involving pedestrians traversing 

stairs[13], [34], where distinct movement characteristics 

facilitate height estimation through motion pattern analysis. 

Wearable inertial modules, being stably fixed, offer more 

easily distinguishable characteristics; hence, most current 

research in this area is based on such platforms[35], [36], 

[37]. However, wearable inertial modules require users to 

wear additional devices, which can impact user adoption and 

comfort, especially when worn for prolonged durations. 

Consequently, these devices are not widely used as a daily 

platform for pedestrian floor identification. 

III. Scenario Characteristic Analysis 

In this section, we analyze the characteristics of two 

scenarios: elevator and escalator, along with the movement 

patterns of pedestrians in these two scenarios. Elevator and 

escalator scenarios are narrow typically. As pedestrians take 

elevators and escalators, the motion tends to be relatively 

constrained, resulting in a relatively stable state of motion. 

The movement of pedestrians is inherently linked to the 

operation of the elevator and escalator. 

A. Elevator Scenario 

The operation of elevators can be categorized into multi-

floor and single-floor transit operation modes, with similar 

characteristics but slight difference. Prior to the elevator's 
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movement and subsequent to its cessation, there is typically 

a short static period when the cab door open/close. Due to 

the narrow space inside the elevator cabs, pedestrians tend to 

stand still during this short static period, with their phones 

considered zero velocity. 

   (1) 

where  is the velocity of the smartphone, superscript “n” 

refers to the navigation frame (n-frame).  

Meanwhile, for the multi-floor transit operation mode, the 

elevator cab will sustain a constant speed of ascent or 

descent for an extended duration in the middle of the 

movement. During this period, it can be assumed that 

pedestrians are not experiencing external acceleration. In 

this state, the specific force read by the inertial sensor is 

primarily attributable to the Earth's gravity acceleration.  

  (2) 

where   is the specific force in the n-frame.   is the 

gravity of the Earth.  

On the contrary, for the single-floor transit operation 

mode, the elevator cab will decelerate right after accelerate 

without any constant speed period. Figure. 1 shows the 

phone acceleration norm in the single-floor (from 16th to 

17th floor) and the multi-floor (from 1st to 17th floor) 

operation mode respectively, while pedestrians hold the 

smartphones during elevator transit.  
Phone Acceleration Norm from 16th to 17th Floor (Elevator)

static

static
decelerated

accelerated

static

static

uniform

decelerated

accelerated

Phone Acceleration Norm from 1st to 17th Floor (Elevator)

 
Fig. 1. The change in phone acceleration norm while pedestrians 
take the elevator. 

B. Escalator Scenario 

When pedestrians take escalators, the confined nature of 

the escalator dictates that pedestrians move at a constant 

speed along with the escalator. Pedestrians exhibit forward 

and vertical velocity, while their lateral velocity is zero. 

Therefore, in this case, pedestrians demonstrate motion 

characteristics as depicted in formula (2). Typically, 

pedestrians hold smartphones ahead while going to 

escalators. During this time, the impact of the misalignment 

angle between the smartphone's heading and the walking 

direction can be disregarded. It can be assumed that the 

orientation of the pedestrian aligns with the direction of the 

escalator. Thus, in the smartphone's coordinate system, the 

lateral velocity is zero. 

  (3) 

where   is the lateral velocity of the smartphone, 

superscript “b” is the body frame (b-frame).  

Different with the elevator scenarios, pedestrians in 

escalator scenarios do not experience a state of zero velocity. 

Correspondingly, prior to stepping onto and after stepping 

off the escalator, pedestrians only have forward velocity, 

with lateral and vertical velocity as zero. For the smartphone 

holding ahead, both lateral and vertical velocity are zero in 

the b-frame 

  (4) 

where  is the velocity of the smartphone in the b-frame, 

  is the estimated forward velocity. In this case, 

pedestrians’ forward speed   is mainly determined by 

the step detection and step length estimation algorithm. In 

this paper, we apply the conventional peak detection 

algorithm to detect steps, while the step length estimation 

algorithm employs the linear model[38]. Figure. 2 shows the 

phone acceleration norm during the escalator transit from the 

1st to 2nd floor when pedestrians hold smartphones ahead.  

 

uniform
walked walked

Phone Acceleration Norm from 1st to 2nd Floor (Escalator)

 

Fig. 2. The change in phone acceleration norm while pedestrians 
take the escalator. 
 

The pedestrian motion characteristics in both elevator and 

escalator scenarios can be employed as constraint 

information, serving to limit the growth of errors within INS. 

These motion constraints prove crucial in suppressing the 

divergence of navigation solutions due to the accumulation 

of INS errors. Based on these constraints, we can establish 

motion constraint equations. A comprehensive exposition of 

these equations will be presented in Section IV. 

IV. Algorithm Design 

The system algorithm framework for the proposed 

pedestrian floor identification method is depicted in Figure. 

3. We employ the inertial mechanization as the foundational 

framework and categorize scenarios into elevator, escalator, 

and plane. In this paper, we used manual calibration for 

scenario recognition. While there have been some relatively 

mature solutions for scenario recognition, such as spatial 

landmark[39], the focus of this paper lies on the height 

estimation and floor identification of pedestrians in elevator 

and escalator scenarios. Thus, we do not conduct relevant 

research on scenario recognition.  

After distinguishing the scenarios, according to the 

scenario analysis in Section III, pedestrian motion constraint 

observations can be obtained for each scenario. In elevator 

scenarios, zero velocity update (ZUPT)[40] and acceleration 

update, as shown in formula (1) and (2) are used to mitigate 

the accumulation errors. In escalator scenarios, we employ 

acceleration update, zero lateral velocity update (Lateral 

ZUPT) and non-holonomic constraint (NHC)[41] methods, 

as shown by formula (2)(3)(4). We also separately 

distinguish the plane scenario from elevators and escalators. 

In plane scenarios, we use height locking to mitigate the 
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height divergence of PDR.  

Inertial mechanization integrates the acceleration and 

angular velocity output from the IMU to estimate the 

pedestrian’s height changes. By utilizing the pedestrian 

motion constraints in these scenarios, we suppress error 

divergence to achieve more accurate height estimation. 

Meanwhile, the reverse smoothing algorithm is employed to 

enhance system stability[42]. The following will introduce 

each part of the algorithm in detail. 

A. lNS Mechanization  

The fundamental principle of INS mechanization is to 

calculate the user's position, velocity and attitude at the next 

time based on the known position, velocity and attitude at 

the current time through the angular velocity and specific 

force output by gyroscopes and accelerometers. However, 

due to the substantial noise levels in the built-in IMU of the 

smart-phone, correcting minor error terms is ineffectual in 

enhancing navigation performance. Therefore, in this paper, 

we disregard the impact of the Earth's rotational angular 

velocity and the angular velocity of entrainment caused by 

pedestrian motion and velocity sculling effect. Simplified 

INS mechanization can be written as 

 (5) 

where   and   are the position and velocity in the n-

frame;  is the rotation matrix that denote the rotation of 

the b-frame with respect to the n-frame;   and   are 

the curvature radius of the meridian and the prime vertical, 

respectively;   is the gravity vector in the n-frame;  

and  are the angular velocity and acceleration from the 

IMU, respectively;   and   are the bias of the 

gyroscope and accelerometer, respectively;  is the  

identity matrix;  is time interval from the (k-1)-th epoch 

to the k-th epoch;   denotes the skew-symmetric 

matrix of the vector.  

B. Filter Design 

The Kalman Filter algorithm is one of the most common 

methods in data fusion. The algorithm estimates state more 

accurately by integrating various types of observations. In 

this paper, we employ the Extend Kalman Filter (EKF) to 

mitigate the negative effect of nonlinearization. The filter 

state is defined as the navigation error state. 

The system state equation of the filter can be derived from 

the differentiation of the INS mechanization algorithm. This 

process can be referenced in paper[43]. The error state vector 

can be written as 

  (6) 

where  ,   and   are the position error, velocity 

error and attitude error in the n-frame;  and  are the 

error of the gyroscope bias and accelerometer bias, 

respectively. Equation of state can be written as 

  (7) 

where   is the navigation error state vector;   is the 

covariance matrix of the navigation error state; Q is the noise 

matrix of system state. State transition matrix   can be 

written as 

 
Fig. 3. Pedestrian Floor Identification System Algorithm Framework 
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 (8) 

where   is the correlation time of first order Markov 

Process. When observations are available, such as velocity 

of pedestrian, the measurement equation can be established, 

and it can be written as 

  (9) 

where   is the difference between predictions and 

observations;   is the design matrix;   is the noise of 

the observations. Measurement update of the navigation 

error state and its covariance matrix can be written as 

 (10) 

where   is Kalman gain matrix;   is noise matrix of 

observations. As the navigation error state serves as the filter 

state, at last we feed back the estimated error state to the 

navigation state and reset the estimated error state to zero. 

C. Pedestrian Motion Constraint 

Pedestrian movement patterns characteristic in elevator 

and escalator scenarios are induced in Section II. Different 

movement patterns correspond to specific pedestrian motion 

constraint equations. 
1) Elevator scenarios 

According to the analysis of the elevator scenario in 

Section II, there is a brief static state before the elevator 

commences and after it concludes. ZUPT can be utilized to 

mitigate the accumulation of velocity errors. The velocity 

measurement equation can be written as  

  (11) 

where  is the velocity estimated by INS;  is the noise 

of the velocity observations. Meanwhile, Zero Integrated 

Heading Rate (ZIHR) can also be applied to restrain the 

accumulation of heading errors[44]. The heading 

measurement equation can be written as  

  (12) 

where   is the heading estimated by INS;   is the 

heading at the first epoch when a pedestrian is in a stationary 

state;  is the element in the i row and j column of the 

direction cosine matrix;   is the noise of the heading 

observation. 

In the multi-floor transit operation mode, the elevator is in 

a state of uniform motion, during which time acceleration 

update can be used to mitigate the spread of horizontal 

angles (roll and pitch). According to the formula (2), the 

acceleration measurement equation can be formulated as  

  (13) 

where   is the output of accelerometer;   is the 

direction cosine matrix estimated by INS;   is the local 

gravity acceleration;  is the bias of accelerometer;  is 

the noise of acceleration observations. 

2) Escalator scenarios 

Based on the analysis of the escalator scene in Section II, 

before ascending and after descending the escalator, NHC 

can be used to mitigate the divergence of velocity error[41]. 

According to the formula (3), the velocity measurement 

equation can be formulated as 

  (14) 

where the direction cosine matrix  denote the rotation of 

the n-frame with respect to the b-frame;  is the velocity 

in n-frame estimated by INS. As pedestrians taking in the 

escalator, the lateral velocity is zero. Lateral ZUPT can be 

used in this case. The velocity measurement equation can be 

formulated from (14), it can be written as 

  (15) 

where  is the element in the 2 rows of the (14). And 

as the escalator is in a state of uniform motion, acceleration 

update can also be used to mitigate the spread of horizontal 

angles, as formulated in equation (13).  

3) Plane scenarios 

In the plane scenarios, it can be assumed that the height 

change of the pedestrian is zero. Elevation locking can be 

used to constrain height drift. The position measurement 

equation can be formulated as 

  (16) 

where  is the position estimated by INS;  and  

are the plane position of pedestrian;  is the constant 

height, generally measured after taking elevators or 

escalators;  is the noise of the position observations. 

Please note that we only need to use the third line (i.e. the 

height dimension) of this observation equation.  

D. Reverse Smoothing 

In the real-time location stage, measurements from the 

present and previous moments are used to estimate the 

current state. However, for non-real time location, 

subsequent measurements can also be utilized to optimize 

the current state. The reverse smoothing algorithm leverages 

measurements from the previous, present and following 

moments to estimate the current system state. 
Once the pedestrian has traversed the elevator and 

escalator, the floor can be determined. All measurements 

while the pedestrian take in the elevator or escalator can be 

exploited to estimate height. Therefore, the reverse 

smoothing algorithm can be utilized in the system.  
In this paper，RTS algorithm is applied to enhance height 
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estimation performance[42]. It can be formulated as 

  (17) 

where K is the smoothing gain matrix; N is the total number 

of observations. 

V. Experiments and Results 

In this section, experiments have been designed to 

validate the feasibility of the algorithm proposed in Section 

III, which includes height estimation in both elevator and 

escalator scenarios. Additionally, several groups of 3D 

Pedestrian Dead Reckoning (PDR) cases are designed to 

demonstrate the effectiveness of the floor identification 

algorithms in 3D pedestrian navigation. Correspondingly, 

results for height estimation and PDR trajectories will also 

be presented. 

A. Experimental Setting 

Tests were conducted in multi-story buildings, with 

smartphones held steadily and at a specific angle during data 

collection, as shown in Fig. 4 and Fig. 5. There smartphones 

(i.e., HUAWEI Mate 40 Pro, Xiaomi 11, and Samsung 

Galaxy S20) were used for data collection. All sensors 

(gyroscope, accelerometer and magnetometer) have a data 

sampling rate of 50 Hz. The error model parameters of the 

IMU sensors are provided in Table I. Based on these 

parameters, the system’s covariance matrix q(t) can be 

calculated, and the corresponding equivalent discretized 

covariance matrix Q can be obtained after discretization. 
TABLE I 

ERROR MODEL PARAMETERS OF THE IMU SENSORS 
Parameter Symbol Value 

Velocity random walk   

Angle random walk   

STD of gyroscope bias   

STD of accelerometer bias   

Correlation Time of accelerometer bias   

Correlation Time of gyroscope bias   

 

 
Fig. 4. Participant holding a smartphone in the elevator test. 

 
Fig. 5. Participant holding a smartphone in the escalator test. 

Meanwhile, to evaluate the accuracy of the proposed 

algorithm, we recorded atmosphere pressure data by 

barometer and calculated the corresponding heights for 

comparison. Two methods were employed for barometric 

altitude measurement: one based on the barometric pressure-

to-height conversion formula[3], and the other using the 

Extended Kalman Filter (EKF) to integrate barometer data 

with inertial sensor data[45]. Additionally, we replicated an 

existing height estimation method based on inertial sensors, 

as describe in [33], for comparative purposes. This method 

requires prior information about elevator and escalator 

speeds and escalator inclinations. The speeds and 

inclinations used in this method are shown in Table II. The 

method will be referred to as ‘IMU’ in the subsequent text. 
TABLE II 

PARAMETERS OF ELEVATORS AND ESCALATORS USED IN THE 

COMPARISON PLAN 

                   

                2  /  

          
       0 5  /  

I                  30         

The data collection process for the experiments is outlined 

as follows:  

1) Elevator 

Participants held the smartphones and initiated the data 

collection software once they were stable after entering the 

elevator. They rode the elevator to a designated floor and 

stopped the software when the elevator halted and the doors 

fully opened. 

2) Escalator 

Participants approached the escalator, started data 

collection before stepping on, ascend to the next floor, and 

walked a short distance before stopping the software. 

3) 3D PDR cases 

Participants move freely in a shopping mall while holding 

the smartphones, including movements involving floor 

changes via elevators or escalators. 
 

In elevator scenarios, pedestrians often traverse more than 

one or two floors, necessitating high accuracy in height 

estimation. Conversely, escalators typically span only one or 

two levels, so accurately identifying the direction of 

movement suffices for floor positioning needs. 

B. Elevator Results 

The testing scenario for the elevator experiment is a 17-

story office building. The experiment involves taking the 

elevator up and down between 1st floor and 17th floor with 

intermediate stops, which simulates the real situation of 

pedestrians taking elevators in the multi-floor transit mode. 

The reference floor heights were measured by a laser range-

finder. 

Two observation corrections are employed in the elevator 

scenarios, one is the ZUPT and the other is the acceleration 

update. In this paper, the velocity standard deviation for the 

ZUPT is 0.02 m/s, and for the acceleration update, the 

acceleration standard deviation is 2.0 m/s². 

Figure. 6 and Figure. 7 depict two sets of the pedestrian 

height estimation results for taking the elevator up and down 

between the 1st floor and the 17th floor with intermediate 

stops. 

  
Fig. 6. Two sets of height estimation results from the 1st floor to the 
17th floor by elevator.  
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Fig. 7. Two sets of height estimation results from the 17th floor to the 
1st floor by elevator. 
 

Table III and Table IV present statistical summaries of 

height estimation error results between the 1st floor and the 

17th floor with intermediate stops by taking the elevator. The 

error of the height estimation calculation formula is defined 

as: 

  (18) 

where is   the real height of the current floor;   is the 

estimated height of the current floor. Due to the inherent 

nature of inertial navigation systems as relative positioning 

tools that accumulate errors over time, we employ this 

relative error as a metric. As error divergence increases with 

duration, absolute error fails to serve as the optimal 

assessment criterion. Consequently, relative error provides a 

more accurate reflection of the solution’s precision. 
TABLE III 

STATISTICAL SUMMARIES OF HEIGHT ESTIMATION ERROR FROM 1ST TO 

17TH BY TAKING ELEVATORS 

          p   d   U B      U + B    

E        

Up 

     1 

6 1 33% 4 81% 10 96% 9 39% 

13 2 38% 5 00% 8 24% 7 52% 

17 2 18% 4 72% 8 25% 8 48% 

E        

Up 

     2 

3 2 92% 2 92% 13 30% 8 28% 

7 3 34% 3 90% 12 30% 10 87% 

13 3 02% 4 08% 8 08% 7 54% 

17 3 11% 4 34% 7 23% 7 18% 

E        

Up 

     3 

3 4 32% 4 32% 10 04% 8 28% 

6 4 43% 4 05% 5 58% 5 82% 

13 3 24% 2 88% 6 38% 5 22% 

17 2 55% 3 02% 5 56% 4 57% 

E          2 98% 4 00% 8 72% 7 56% 

TABLE IV 
STATISTICAL SUMMARIES OF HEIGHT ESTIMATION ERROR FROM 17TH 

TO 1ST BY TAKING ELEVATORS 

          p   d   U B      U + B    

E        

D w  

     1 

13 0 48% 0 72% 4 10% 3 14% 

6 0 22% 1 19% 3 60% 3 49% 

3 0 69% 2 14% 1 85% 2 47% 

1 1 01% 2 27% 2 42% 1 91% 

E        

D w  

     2 

13 1 57% 1 81% 11 83% 11 23% 

7 1 59% 2 22% 7 87% 4 71% 

6 1 71% 2 28% 7 95% 5 42% 

4 1 69% 2 17% 7 21% 4 85% 

3 1 55% 2 00% 7 28% 4 99% 

1 1 77% 2 16% 6 72% 4 88% 

E        

D w  

     3 

13 1 21% 2 72% 5 07% 3 08% 

6 1 93% 1 36% 6 15% 4 50% 

3 2 31% 1 69% 6 85% 3 97% 

1 2 58% 2 04% 6 01% 4 13% 

E          1 45% 1 91% 6 07% 4 48% 

From the results, compare the error statistics of height 

estimation between the algorithm proposed in this paper and 

barometric altitude measurement for elevator scenarios, it’s 

observed that the algorithm proposed in this paper offers 

better height estimation accuracy compared to the two 

methods of altitude measurement by barometer. Meanwhile, 

the height estimation method based on the barometer is 

easily affected by the surrounding environment. At the 

moment when the elevator doors open and close, the air 

pressure inside the elevator is unstable due to the influence 

of air flow. Therefore, we conducted an additional set of 

height estimation experiment, as shown in Figure. 8. From 

the figure, it’s observed that the height estimation result 

based on the barometric altitude formula is unstable due to 

air pressure fluctuations at the moment the doors open and 

close. On the contrary, the method proposed in this paper is 

not affected by the surrounding air pressure and temperature, 

resulting in higher stability.  

 
Fig. 8. Height estimation results from the 1st floor to the 6th floor by 
elevator. 
 

Moreover, compared with the existing method based on 

IMU, the algorithm proposed in this paper exhibits slightly 

superior accuracy. Furthermore, the algorithm proposed in 

this paper does not require prior knowledge of the elevator’s 

uniform speed, making it more universally applicable. In 

summary, the height estimation algorithm proposed in this 

paper can effectively meet the pedestrian floor identification 

needs in the elevator scenario. 

C. Escalator Results 

The escalator experiment was conducted in a shopping 

mall, involving traveling up and down between 1st floor and 

2nd floor. The reference floor heights were also measured by 

a laser range-finder.  

Three observation corrections are utilized in the escalator 

scenarios, one is the NHC, another is the lateral ZUPT, and 

the other is the acceleration update. The NHC correction 

primarily employs the constraint that the vertical velocity is 

zero, with a corresponding velocity standard deviation of 0.3 

m/s. The velocity standard deviation for the lateral ZUPT is 

0.05 m/s, and for the acceleration update, the acceleration 

standard deviation is 2.0 m/s². 

Figure. 9 and Figure. 10 illustrate two sets of the 

pedestrian height estimation results for the escalator 

experiment, depicting the height estimation while traveling 

up and down between the 1st floor and the 2nd floor.  
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Fig. 9. Two sets of height estimation results from the 1st floor to the 
2nd floor by escalator. 

  
Fig. 10. Two sets of height estimation results from the 2nd floor to 
the 1st floor by escalator. 
 

Tabel V and Table VI present the statistical summaries of 

height estimation error results between the 1st floor and the 

2nd floor by taking escalator. The error calculation method 

follows the formulation provided in equation (18). 
TABLE V 

STATISTICAL SUMMARIES OF HEIGHT ESTIMATION ERROR FROM 1ST TO 

2ND BY TAKING ESCALATOR 

        p   d   U B      U + B    

1 1 17% 4 00% 19 17% 18 33% 

2 3 33% 4 67% 20 50% 18 50% 
3 2 83% 0 33% 21 67% 20 83% 

4 3 83% 10 00% 20 33% 18 00% 

5 4 33% 8 50% 24 67% 20 83% 
6 5 50% 3 00% 22 00% 19 83% 

     3 50% 5 08% 21 39% 19 39% 

TABLE VI 
STATISTICAL SUMMARIES OF HEIGHT ESTIMATION ERROR FROM 2ND TO 

1ST BY TAKING ESCALATOR 

        p   d   U B      U + B    

1 5 50% 5 50% 20 50% 17 50% 
2 7 50% 11 83% 10 67% 10 83% 

3 6 33% 0 50% 23 33% 21 50% 

4 10 83% 12 67% 19 17% 16 83% 
5 7 83% 11 17% 17 67% 14 67% 

6 9 83% 6 00% 16 33% 15 67% 

     7 97% 7 95% 17 95% 16 17% 

The results indicate a marginally higher accuracy in height 

estimation when pedestrians take the escalator up compared 

to downward. This phenomenon aligns with findings from 

existing methods based on IMU. This discrepancy can be 

attributed to the dynamic of pedestrian motion, where a 

slight upward vertical velocity occurs as pedestrians step 

onto the escalator. During upward escalator movement, this 

vertical motion aligns with the escalator’s vertical velocity, 

whereas during downward movement, it is nearly opposite. 

Consequently, the accuracy of height estimation is 

marginally compromised when pedestrians take the escalator 

downward.  

To provide a robust comparison, we conducted statistical 

analyses between the proposed method and other methods 

shown in the tables. Across both tables, the proposed method 

consistently shows lower error percentages compared to the 

Baro Methods. Additionally, as shown in Fig. 9 and Fig. 10, 

similar to the elevator scenario, the pressure instability 

caused by pedestrian movement can lead to unstable height 

estimation. In contrast, the method proposed in this paper, 

based solely on IMU, is not affected by the surround 

environment, thereby ensuring higher stability. 

In summary, the method proposed in this paper offers 

notable advantages over existing methods based on IMU. It 

maintains notable accuracy in height estimation without the 

need for prior information. Moreover, it demonstrates a 

significant improvement in accuracy compared to the two 

methods of height estimation by barometer. Consequently, 

the height estimation method for escalator scenarios 

effectively meets the requirements for pedestrian floor 

identification. 

D. Reverse smoothing algorithm 

The RTS indeed provides stable results by incorporating 

previous, present, and future measurements. However, the 

reverse smoothing algorithm does not affect the final 

navigation (height estimation) result. Its primary purpose is 

to make the trajectory smoother and more consistent with the 

actual path. Figure. 11 and Figure. 12 compare the proposed 

method with and without RTS in elevator and escalator 

scenarios, demonstrating the effectiveness of RTS. 

 
Fig. 11. Comparison of Height Estimation with and without RTS in 
Elevator Scenarios. 

 
Fig. 12. Comparison of Height Estimation with and Without RTS in 
Escalator Scenarios 

For pedestrians who need to determine which floor they 

are on, knowing their current height in real-time is 

unnecessary. They only need to calculate their height upon 

reaching a specified floor to determine their location. 

Therefore, RTS is not absolutely essential in the algorithm 

proposed in this paper. Its role is merely to reflect the true 

trend of the user’s height changes. 

E. 3D PDR Case Study 

The experiment for the 3D PDR case was conducted in a 

multi-story shopping mall. Participants were instructed to 

walk freely throughout the various floors of the building, 

transitioning between levels via elevators and escalators. 

The reference truth of floor heights were provided by a laser 

range-finde   M                                        

                                                          

                                                         

               q                                       3  

                                                          

                                                           

                                                             

Figure. 13 depicts the trajectories of the two cases of the 

3D PDR.  

  
Fig. 13. The Trajectories of the pedestrian estimated by PDR and 
estimation algorithm.  
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Figure. 14 shows the height estimation results of the 

estimated results and the reference truth.  

 
Fig. 14. Height estimation result calculated by the proposed height 
estimation algorithm.  
 

The result illustrated in both the trajectory plot and height 

estimation plot clearly demonstrate the effectiveness of the 

floor identification method proposed in this paper. This 

method precisely estimates the height of pedestrians after 

they transition between floors via elevators and escalators, 

facilitating accurate determination of the current floor level. 

Unlike traditional PDR methods that lack the capability to 

discern floor levels, the method proposed in this paper offers 

a viable and practical solution for pedestrian floor 

identification, addressing a significant gap in indoor 

navigation systems. 

VI. Conclusion and Future Work 
In this paper, a pedestrian floor identification method 

based on inertial sensors in smartphones is proposed. By 

investigating the unique motion characteristics of 

pedestrians in elevator and escalator scenarios, we designed 

appropriate motion constraint models corresponding to these 

contexts. The core algorithmic framework is based on INS, 

employing the EKF to integrate pedestrian motion constraint, 

thus estimating the height changes as pedestrians transition 

between floors. The precision of height estimation achieved 

by the proposed method outperforms current IMU-based and 

barometer-based methods, exhibiting relative errors in 

elevator scenarios of 2.98% during upward and 1.45% 

during downward. In escalator scenarios, the method 

demonstrates relative errors of 3.50% for upward and 7.97% 

for downward movements. Moreover, the method proposed 

in this paper offers a promising solution for height estimation 

in the case study of 3D PDR. 

The floor identification methods proposed in this paper 

address the essential positioning requirements for pedestrian 

users, exhibiting high reliability, extensive scalability, and 

cost-effectiveness. However, there are several limitations 

that need to be addressed. One of the primary challenges is 

the precise determination of the pedestrian’s movement 

scenario. The current method relies on manual calibration for 

scenario recognition, and future research should focus on 

developing robust algorithms for automatic scenario 

recognition. Another challenge is the adaptation to various 

holding modes. The method in this paper only considers the 

horizontal holding mode of smartphones. However, in daily 

use, people hold their smartphones in various ways. Future 

research could explore how different holding modes affect 

the accuracy of height estimation. 
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