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Magnetic vector constraint pedestrian dead
reckoning based on foot-mounted and

waist-mounted IMU
Jian Kuang, Tao Liu, Yan Wang, Xianmei Meng and Xiaoji Niu

Abstract—The foot-mounted inertial navigation system (Foot-
INS) is a crucial technology for professional pedestrian posi-
tioning, unaffected by environmental conditions. However, due
to the unobservable nature of the absolute heading, single or
dual Foot-INS configurations suffer from significant position drift
errors. This paper introduces an innovative pedestrian dead
reckoning (PDR) method that combines foot-mounted and waist-
mounted IMU with magnetic field vector constraints. Leveraging
the fact that the displacements of the foot and waist are
consistent when the foot makes ground contact, the proposed
method uses the relative displacement estimated by Foot-INS
to correct the waist-mounted INS. Building on this, a relative
magnetic field vector constraint method is developed using error
state clonal Kalman filtering, capitalizing on the similarity of
magnetic interference within a local area. The results from 12
tests conducted in typical indoor environments, such as offices
and underground parking lots, demonstrate that the proposed
method significantly enhances positioning performance in areas
with frequent magnetic interference. The positioning error is
reduced by more than 49% compared to single or dual Foot-
INSs.

Index Terms—Pedestrian dead reckoning (PDR), foot-mounted
inertial navigation system (Foot-INS), magnetic field, pedestrian
navigation.

I. INTRODUCTION

PEDESTRIAN navigation system (PNS) is a critical tech-
nology for safeguarding workers’ lives in indoor envi-

ronments, such as factory personnel safety monitoring, fire
rescue and emergency search [1], [2], [3], [4]. Sensor-based
PNS is a prevalent solution for professional indoor pedes-
trian localization as it does not depend on prior information,
such as signal base stations and signal fingerprints. High-
precision sensor-based PNS schemes typically employ LiDAR
[5], vision [6], and inertial measurement units (IMUs) [7],
[8]. Unlike LiDAR and camera systems, which achieve po-
sitioning by observing the surrounding environment, IMU-
based PNS relies solely on observed motion information. This
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autonomous positioning method is unaffected by external envi-
ronmental factors. Moreover, micro-electromechanical system
IMU (MEMS-IMU) based PNS has become an indispensable
technology for most PNS solutions due to its advantages of
low cost, low power consumption, and compact size [9], [10],
[11], [12].

High-precision pedestrian navigation systems (PNS) based
on MEMS-IMU typically refer to foot-mounted inertial navi-
gation systems (Foot-INS). Foot-INS operates on the assump-
tion that a pedestrian’s feet periodically make contact with the
ground, utilizing zero-velocity update technology (ZUPT) to
control the velocity error of inertial navigation, thus achieving
stable relative position estimation [13]. However, the heading
of Foot-INS is not appreciable or is weakly appreciable when
only ZUPT is available [14]. To enhance the accuracy and
reliability of Foot-INS, multi-constraint correction algorithms
have been developed[15], [16]. Zero Integrated Heading Rate
(ZIHR) assumes that the change in heading during foot contact
are due to sensor error, and is only suitable for users who re-
main stationary for extended periods. Straight-line constraints
rely on the user’s tendency to walk in straight-line trajectories,
constructing heading-invariant observations to control heading
drift. On this basis, the heuristic heading reduction extracts
building orientation to create a heading fingerprint, effectively
controlling heading errors over the long term [17]. However,
its effectiveness, as well as that of straight-line constraints,
depends on the walking trajectory’s shape and may be limited
in complex environments. By observing the geomagnetic field,
the compass provides very accurate and reliable heading infor-
mation for Foot-INS in outdoor scenes. Nevertheless, it faces
usability challenges indoors due to magnetic interference from
ferromagnetic objects. These improved heading estimation
methods are only suitable for specific user dynamics and
positioning environments. In complex scenes, such as irregular
indoor spaces, the positioning performance of Foot-INS still
deteriorates significantly [18].

PNS based on two or more sensors can enhance the state
observability of the heading and sensor noises (e.g., gyroscope
biases) [19], [20], such as the dual-foot-based PNS and the
body-sensor-network-based PNS. The dual-foot-based PNS in-
stalls two MEMS-IMUs on the left and right foot, respectively,
providing a theoretical double correction opportunity for zero-
velocity information compared to the single-foot solution. By
leveraging the regular and periodic constraints between the
left and right feet during walking, the system reduces the
position error divergence [19]. The core concept of dual-
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foot-based PNS is to use the distance between the feet to
establish a link, which can be implemented with or without
an additional ranging sensor [14]. In the ranging-sensor-based
solution, a pair of ultrasonic sensors [21] or visual devices
[22], are used to measure the distance between the feet. In
the dual-foot solution without the assistance of a ranging
sensor, the maximum distance constraint is the most classic
approach, assuming a maximum separation between the feet
[23]. However, the minimum distance between feet is relatively
constant in most walking scenarios [24]. Therefore, our previ-
ous work proposed a minimum distance constraint approach,
which has demonstrated superior positioning performance and
robustness compared to the maximum distance constraint
method [25]. Dual-foot-based PNS offers strong autonomous
positioning capability and robustness. However, accurately
estimating heading and position remains challenging, causing
pedestrian positioning errors to still increase over time.

Compared to PNS based on foot-mounted IMUs, PNS
systems that use IMUs installed in other parts of the body
typically exhibit lower positioning performance due to the ab-
sence of zero-velocity updates. However, these systems benefit
from significantly reduced magnetic interference at the waist
and above. Body-sensor-network-based PNS takes advantage
of the distinct characteristics of multiple sensors placed on
the body to achieve more accurate positioning. A classical
approach involves transferring the foot position data to the
waist and using it as an independent observation. This data
is then combined with compass to correct the navigation state
of the waist-mounted INS [26], [27]. However, the position
estimated by Foot-INS is divergent rather than convergent, and
the position error cannot be modeled as zero-mean Gaussian
white noise. Consequently, this method does not fully leverage
the advantages of multi-sensor fusion, resulting in limited
improvements in positioning performance. Moreover, waist-
mounted magnetometers in indoor environments still suffer
from significant magnetic interference. While the quasi-static
magnetic field (QSF) technique can effectively use magne-
tometer measurements to estimate heading in highly perturbed
environments, the stochastic nature of stable magnetic field
regions in the environment limits the effectiveness of QSF
[28], [29]. As a result, the heading estimation can still diverge
quickly. In summary, although body-sensor-network-based
PNS can reduce some magnetic interference and potentially
improve positioning through multi-sensor fusion, challenges
such as divergence in foot position estimates and magnetic
interference in indoor environments limit the overall effec-
tiveness and accuracy of these systems.

In this study, we present a magnetic vector constraint pedes-
trian dead reckoning system that integrates a foot-mounted
IMU and a waist-mounted IMU. The core idea is to use
Waist-INS as an information bridge, integrating the high-
precision relative displacement provided by Foot-INS and the
heading constraint provided by the magnetic vector to achieve
more reliable pedestrian position estimation. Leveraging the
objective fact that the position increments of the foot and
waist are consistent between two consecutive foot-ground
contact periods, the position increment generated by Foot-INS
is used as an independent observation to correct Waist-INS.

We utilize state cloning Kalman filtering to fuse the Waist-
INS data with magnetic field vectors within a time window
(e.g., 20 seconds). This approach suppresses the influence
of magnetic interference by using differential magnetic field
vectors, thereby effectively reducing the position error caused
by heading drift.

The remainder of the paper is organized as follows: Section
II provides an overview of the proposed system. Section III
describes the basic concept of Foot-INS and the estimation of
relative position increments. Section IV introduces a waist-
mounted INS with magnetic vector constraints. Section V
presents the experimental results. Section VI summarizes the
key findings of the study.

II. SYSTEM OVERVIEW

Foot-INS can accurately estimate a user’s displacement
under complex pedestrian gaits because it does not rely on
strict motion model assumptions, such as assuming people
only walk in the direction they are facing. On the other hand,
Waist-mounted INS (Waist-INS) is less susceptible to mag-
netic interference and can use magnetometer observations to
obtain more accurate heading estimates. Therefore, it is natural
to consider fusing Foot-INS and Waist-INS to achieve higher
positioning estimation performance than either algorithm can
provide individually.

Figure 1 illustrates the relative position relationship between
the waist and the foot throughout a gait cycle, which can
be simplified into four stages (H1, H2, H3, and H4). The
dynamics of the foot are significantly greater than those of the
waist, and the relative positional relationship between them
is not fixed. However, there are periodic instances, such as
when the foot (with the IMU) supports the forward movement
of the pedestrian’s body (e.g., stages H1 or H3), where the
projections of the foot and waist on the ground coincide.
Traditional methods utilize these periodic phenomena to con-
struct distance constraints for fusing Foot-INS and Waist-INS,
but this approach typically achieves positioning performance
similar to that of Foot-INS alone [30]. Therefore, this paper
proposes using Foot-INS as a sensor to observe relative
displacement (specifically, extracting the position change at
adjacent H1 stages) to correct the navigation state of Waist-
INS.

Fig. 1. The relative position of the waist and foot in a step cycle.

Figure 2 shows the block diagram of the proposed PDR
algorithm. The proposed method employs a state cloning
extended Kalman filter (SC-EKF) to integrate Waist-INS,
Foot-INS, and magnetic field data. Foot-INS serves as the
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displacement measurement sensor within the algorithm, en-
suring accurate estimation of the user’s position increments.
Additionally, the relative change of the magnetic field within a
sliding window is utilized to mitigate the impact of magnetic
interference and effectively suppress heading drift errors.

Foot-mounted
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Specific force
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Fig. 2. Block diagram of the proposed PDR algorithm based on a foot-
mounted IMU and a waist-mounted IMU.

III. FOOT-MOUNTED INS

Compared to step-model-based pedestrian dead reckoning
(PDR), Foot-INS is more versatile because it directly senses
the user’s dynamics to estimate position changes. Unfortu-
nately, its heading estimation tends to diverge rapidly due
to the lack of effective observations. Previous studies [18]
often restrict the user’s walking trajectory shape (e.g., assum-
ing straight-line trajectories) and the environment (e.g., of-
fice corridors) to improve Foot-INS positioning performance.
However, this approach can lead to significant differences in
positioning accuracy across different users and environments.

Foot-INS utilizes the well-known generalized likelihood
ratio detector [14] to identify periods when the foot is in
contact with the ground, performing zero-velocity updates
during the static period. A 15-dimensional system state is
employed, encompassing position error, velocity error, attitude
error, gyroscope bias, and accelerometer bias. To minimize
dependency on specific user motion trajectories and position-
ing environments, this paper implements Foot-INS solely with
ZUPT. For detailed algorithmic specifics, refer to [15].

Based on the objective observation that when the IMU
is installed on the foot to support the pedestrian’s forward
movement, the projections of the foot and waist on the ground
coincide periodically, this paper utilizes the foot-mounted
INS as an independent odometer. It extracts sparse position
increments from the continuous position output by Foot-INS.
These low-frequency position increments can be represented
as:

∆rfk,i = rfk − rfi (1)

where rf is the position vector in the f -frame, f -frame
represents the navigation frame estimated by Foot-INS, k and
i are the data epochs corresponding to two adjacent steps,
and the steps refer to the epoch corresponding to the middle
moment in the static period.

Based on the conclusion from Reference [14], the position
estimated by Foot-INS is strongly correlated with heading

only under the assumption of zero velocity. Building upon
this, Equation 1 eliminates absolute heading by subtracting
the positions of adjacent footsteps. This process ensures that
the resulting position increment observation is independent of
historical navigation states. In other words, the displacement
increment observation adheres to the assumption in filtering
that observations follow Gaussian white noise.

IV. WAIST-MOUNTED INS WITH MAGNETIC VECTOR
CONSTRAINT

In this section, we outline the fusion algorithm for inte-
grating Foot-INS and Waist-INS. The output from the waist-
mounted IMU is utilized for integral calculations to derive cur-
rent position, velocity, and attitude. Concurrently, relative posi-
tion increments from the Foot-INS are extracted to effectively
mitigate position drift using the State Clone Extended Kalman
Filter (SC-EKF). Additionally, the incremental changes in the
magnetic field vector within the n-frame are incorporated to
enhance the estimation accuracy of the position.

A. Inertial Navigation Algorithm
INS mechanization is a fundamental algorithm in inertial

navigation, characterized by a rigorous theoretical framework.
Due to the limitations of MEMS-IMUs, which are low quality
and prone to errors, certain corrections, such as those related
to Earth’s rotation, are often omitted because they do not
yield significant performance improvements. The simplified
INS mechanization is described by [31]:

rnk =rnk−1 + vn
k∆tk (2)

vn
k =vn

k−1 +Cn
b,k

(
∆vb

k +
∆θb

k ×∆vb
k

2

)
+ gn∆tk (3)

Cn
b,k=Cn

b,k−1

[
I +∆θb

k +
∆θb

k−1 ×∆θb
k

12

]
(4)

where rn and vn are the position and velocity vectors in the n-
frame, respectively; Cn

b is the transformation matrix from the
b-frame to the n-frame; gn =

[
0, 0,−9.8

]T
is Earth’s gravity

vector; ∆vb
k =

(
ãb
k − ba,k

)
∆tk is the velocity increment

in the b-frame; ãb and ba are the acceleration and bias of
the accelerometer, respectively; ∆θb

k=
(
ω̃b

k − bω,k

)
∆tk is the

angle increment in the b-frame; ω̃b and bg are the angle rate
and bias of the gyroscope, respectively; ∆tk = tk − tk−1 is
the time interval between the (k− 1)-th and k-th epochs; and
“×” is the cross-product form of a vector.

B. State Clone Extended Kalman Filter
In the proposed algorithm, a SC-EKF is employed to fuse

the relative position increments of the two IMUs. Additionally,
the incremental changes in the magnetic field vector are
utilized to enhance heading estimation performance, thereby
further improving overall position estimation accuracy.

The system utilizes an error-state-based indirect SC-EKF
approach, where the error state represents the difference be-
tween estimated and actual values. At time k, the (22+3×m)-
dimensional error state variables are defined as:

δxk =
[
sk ηi

]
(5)
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where

ηi =
[
δrni ϕi−m ϕi−m+1 · · · ϕi

]T
,

sk =
[
δrnk δvn

k ϕk δbg,k δba,k δbm,k δαk

]T
,

δrn and δvn are the position and velocity error vectors in
the n-frame, respectively; ϕ is the attitude error vector; δbg ,
δba and δbm are the bias error vectors of the gyroscope,
accelerometer and magnetometer, respectively; and δα is the
angle difference error between the f -frame maintained by foot-
INS and the n-frame maintained by waist-INS, the subscript
”i” is the cloned state at time i, including the 3D position and
attitude, ”m” is the length of the sliding window.

In the SC-EKF, the cloned states do not require updating
during the propagation stage. The propagation of the error-
state covariance can be expressed as:

Pk = ΦkPk−1Φ
T
k +GkQGT

k (6)

where

Φk =

[
Φs

k 019×(3+3m)

0(3+3m)×19 I3+3m

]
,Gk =

[
Gs

k

03+3m

]
,

Φs
k=



I3 Φ12 03 03 03 03 03×1

03 I3 Φ23 03 Φ25 03 03×1

03 03 I3 Φ34 03 03 03×1

03 03 03 I3 03 03 03×1

03 03 03 03 I3 03 03×1

03 03 03 03 03 I3 03×1

01×3 01×3 01×3 01×3 01×3 01×3 1


,

Gs
k=



03 03 03 03 03 03×1
Cn

b 03 03 03 03 03×1
03 −Cn

b 03 03 03 03×1
03 03 I3 03 03 03×1
03 03 03 I3 03 03×1
03 03 03 03 I3 03×1
03×1 03×1 03×1 03×1 03×1 1


,

Φs
k and Gs

k are the linearized state propagation matrix of
the previous state ŝt−1 and all noise (including sensor noise
and biased random walk noise), respectively. Φ12 = I3∆tk,
Φ23 = (fn

k ×)∆tk, Φ25 = Cn
b,k∆tk, Φ34 = −Cn

b,k∆tk, I3 is
a 3-dimension identity matrix.

When the observations are valid, the following methods can
be used to update the state variables and their corresponding
covariance [25]:

δx̂k=δx̂k,k−1 +Kk (δzk −Hkx̂k,k−1) (7)

Pk=(I−KkHk)Pk,k−1(I−KkHk)
T
+KkRkK

T
k (8)

Kk=Pk,k−1H
T
k

(
HkPk,k−1H

T
k +Rk

)−1
(9)

The measurement update of the SC-EKF incorporates the rel-
ative position and relative attitude between the current system
state and a previous system state. To maintain continuity, the
previous system state (i.e., rn and ϕ) is retained in the SC-
EKF through stochastic cloning. The cloned system state is
an exact replica of the current system state, focusing solely

on rnt and ϕt. The probability propagation of the stochastic
clone step in the proposed system is defined as:

P new
k =

[
I19 019×(3+3m)

A

]
Pk

[
I19 019×(3+3m)

A

]T
(10)

A =


I3 03 03 03×13

03 03 03 03×13

...
...

...
...

03 03 I3 03×13

03

I3
...
03

· · ·
· · ·
...
· · ·

03

03

...
03

 (11)

where the rows and columns of A are (3+ 3×m) and (22+
3×m).

C. Position Increment Update

Although there is significant dynamic difference between
the foot and the waist during walking, the position increments
measured by Foot-INS and Waist-INS between two adjacent
steps are consistent. This phenomenon can be expressed as:

0 = rnk − rni −Cn
f∆rfk,i (12)

where rn represents the position estimated by Waist-INS at
epochs k and i, respectively. In the initialization phase, Cn

f

(the direction cosine matrix from the f -frame to the n-frame)
is assumed to be the unit matrix, indicating that the f -frame
and n-frame are parallel. However, due to inconsistent heading
drift rate between Foot-INS and waist-mounted INS over time,
Cn

f varies as time progresses. Perturbation analysis of the Eq.
12 can be expressed as follows:

δz∆rn
k,i

= (r̂nk − r̂ni )− Ĉn
f ∆r̃fk,i

= (rnk + δrnk )− (rni + δrni )

− (I − κ×)Cn
f

(
∆rfk,i + n∆rf

k,i

)
=

(
∆rnk,i −Cn

f ∆rfk,i

)
+ δrnk − δrni

−
(
Cn

f ∆rfk,i

)
× κ−Cn

f n∆rf
k,i

(13)

where ∆rnk,i = rnk − rni represents the position incre-
ment predicted by Waist-INS; κ =

[
0 0 δα

]T
, Cn

f =cosα sinα 0
sinα cosα 0
0 0 1

 represents the direction cosine matirx

between f -frame and n-frame; n∆rf
k,i

represents the noise
for position increments given by Foot-INS. κ × Cn

f n∆rf
k,i

is neglected because it is a small second-order error. The
corresponding observation matrix can be expressed as:

H∆rn=

[
I3 03×15

[
−
(
Cn

f ∆rfk,i

)
×
]
(:,3)

−I3 03×3m

]T
(14)

When the pedestrian is standing still, the position error can be
controlled using a zero position increment observation. This
observation equation is expressed as:

0 = r̂nk − r̂ni (15)

The corresponding observation matrix can be expressed as:

H∆rn=
[
I3 03×16 −I3 03×3m

]T
(16)
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D. Magnetic Vector Constraint Update

Without considering the scale factor and non-orthogonal
error, the simplified magnetometer observation model can be
described as [32]:

M̃ b = Cb
n (M

n
G +Mn

I ) + bm + nm (17)

where Mn
G and Mn

I are the geomagnetic field and magnetic
field interference in the n-frame, respectively; M̃ b and bm are
the measurement and bias of magnetometer, respectively; Cb

n

is the transformation matrix from the n-frame to the b-frame;
nm is the measurement noise. The geomagnetic field at time
k can be expressed as:

Mn
G,k = Cn

b,k

(
M̃ b

k − bm,k

)
+Mn

I,k +Cn
b,knm (18)

Since magnetic interference in typical indoor environments
primarily originates from reinforced concrete structures, it
is reasonable to assume that the magnetic field interference
Mn

I during normal pedestrian walking scenes is a slowly
varying variable. Figure 3 illustrates the magnetic field vectors
observed in the local coordinate frame in an office scenario
(The data collection trajectory is shown in Figure 5-(d)).
Sub-figure (b) depicts the magnetic disturbance specific to
this environment, while sub-figure (c) shows the differential
magnetic field vector aimed at mitigating such disturbances.
In sub-figure (b), the standard deviations of the magnetic
vectors in each direction are 59.2 milligauss, 59.2 milligauss,
and 71.3 milligauss, the standard deviations in sub-figure (c)
are 17.1 milligauss, 13.6 milligauss, and 20.1 milligauss. This
reduction indicates that the differential magnetic field vector
can effectively diminish the impact of magnetic interference
by more than 70%.

Fig. 3. Magnetic field vectors in the local coordinate frame observed
in the underground parking scene. (a) Magnetic field vector Mn

0,i =

Cn
b,i

(
M̃b

i − bm
)

, (b) Magnetic field vector after deducting the mean

Mn
1,i = Mn

0,i − 1
k

∑k
i=1 M

n
0,i, (c) Difference of magnetic field vector

at interval of 0.5 seconds dMn
i = Mn

0,i+0.5 −Mn
0,i.

Based on the property that the differential magnetic field
vector can effectively suppress the influence of magnetic inter-
ference, we reasonably assume that the magnetic interference
in a small area is approximately equal.

Mn
G,1 ≈ Mn

G,2 ≈ · · · ≈ Mn
G,k (19)

The magnetic field vector at any two moments in a small area
satisfies the following equation.

0 ≈ Mn
G,k −Mn

G,i (20)

Substituting Eq. 18 into Eq. 20 gives

0 ≈ Cn
b,k

(
M̃ b

k − bm,k

)
−Cn

b,i

(
M̃ b

i − bm,i

)
(21)

The magnetometer bias can be considered as unchanged in a
short period of time (e.g., 15 seconds) [10], and perturbation
analysis of the Eq. 21 can be expressed as:

δz∆Mn
k,i
=Ĉn

b,k

(
M̃ b

k − b̂m,k

)
− Ĉn

b,i

(
M̃ b

i − b̂m,k

)
=(I − ϕk×)Cn

b,k

(
M̃ b

k − bm,k − δbm,k

)
− (I − ϕi×)Cn

b,i

(
M̃ b

i − bm,k − δbm,k

)
≈∆Mn

k,i+Mn
k×ϕk−Mn

i ×ϕi−
(
Cn

b,k−Cn
b,i

)
δbm,k

(22)

where

∆Mn
k,i =

[
Cn

b,k

(
M̃ b

k − bm,k

)
−Cn

b,i

(
M̃ b

i − bm,k

)]
,

Mn
k =

[
Cn

b,k

(
M̃ b

k − bm,k

)]
,

Mn
i =

[
Cn

b,i

(
M̃ b

i − bm,k

)]
.

The observation equation corresponding to the magnetic field
vector between k-th and i-th epoch can be expressed as:

H∆Mn=
[
03×6 Mn

k × 03×6 Cn
b,i−Cn

b,k 03×4 Mn
i ×

]
(23)

Since the indoor magnetic field anomaly has a random char-
acteristic, the algorithm implementation will use the average
value of the magnetic field vector in the window to replace
the magnetic field vector observation at a certain moment.

V. EXPERIMENTAL RESULTS

A. Test Description

Figure V-A illustrates the positional arrangement of sensors
worn by the tester, including a foot-mounted IMU, waist-
mounted IMU, and LiDAR SLAM system. The foot-mounted
IMU is located at the heel, while the waist-mounted IMU
is positioned at the back waist. The x-axis of the waist-
mounted IMU is roughly parallel to the pedestrian’s forward
direction (e.g., the angle should be less than 15◦), which
is an effective measure to ensure that the proposed method
can quickly reach a convergence state. Additionally, a LiDAR
SLAM system is installed in the backpack. The inertial module
used in the experiment was developed by the WHU-i2Nav
team and includes a MEMS IMU, power module, Bluetooth
low energy module, memory module (SD card), and a pow-
erful general-purpose multi-protocol system-on-chip (SoC).
Time synchronization among multiple devices is achieved by
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transmitting timestamps to smartphones via Bluetooth. The
bias instability of the inertial sensors is 10 ◦/h and 0.2 mg,
the white noise is 0.24 ◦/

√
h and 0.06 m/s/

√
h. In typical

indoor environments, the LiDAR SLAM system provides a
position reference with centimeter-level accuracy (see Table I
for specific parameters), which is essential for evaluating the
performance of the positioning system. The reference attitude
is calculated by combining the position output by LiDAR
SLAM system with the waist-mounted IMU and then reversely
smoothed.

Foot-Mounted 
IMU

Waist-Mounted 
IMU

LiDAR
SLAM

Back View Right View

Fig. 4. The relative positional relationship between foot-mounted IMU, wais-
mounted IMU, and LiDAR SLAM.

TABLE I
SPECIFICATIONS OF THE LIDAR SLAM SYSTEM

Parameters Value

Model GoSlam RS100i
Measurement Accuracy 1 cm (Relative), 2 cm (Absolute)
Range Up to 120 m
Scan Speed 320,000 points/second
Point Precision 2 mm (peak precision)
Operating Time 4 hours

We conducted a positioning performance evaluation in-
volving five different schemes: 1) L-Foot and R-Foot: This
scheme utilizes zero-velocity update (ZUPT), without incor-
porating additional observations such as linear constraints
or magnetometer observations based on specific user motion
trajectory shapes and positioning environments [15]. 2) Dual-
Foot: Building upon L-Foot and R-Foot, this solution adds
the constraint of the shortest distance between the left and
right feet. For detailed methods, please refer to [25]. 3)
Heading-Step: This scheme estimates step length using L-
Foot and determines heading using an attitude and heading
reference system (AHRS) as described in the literature [29].
4) Proposed: The algorithms described in Sections III and IV
of this paper. L-Foot is used to provide relative displacement
increments..

In the initial stage, the position and velocity vectors of
Waist-INS are set to zero, the roll and pitch are estimated

by the accelerometer observations, the heading of Foot-INS
set to zero, and the heading of Waist-INS is estimated by the
relative displacement output by Foot-INS. The details are as
follows: 

ϕ = tan−1
−ab

y

−ab
z

θ = tan−1 ab
x√(

ab
y

)2
+ (ab

z)
2

Ψ = tan−1
∆rf1,y

∆rf1,x

(24)

where ϕ, θ and Ψ are roll, pitch, and heading, rf1 represents the
displacement of the foot when taking the first step as estimated
by Foot-INS.

Since all the evaluated schemes are relative positioning
methods, we aligned the initial 10-meter segment of each test
trajectory with the reference trajectory. This alignment process
ensures consistent initialization of position and heading across
the different schemes being compared. It provides a standard-
ized starting point for evaluating their performance in terms
of accuracy and reliability.

B. Test results in the office building

In this section, the test trajectories were conducted in
an office building corridor scene to evaluate the positioning
performance of the proposed method in environments with
frequent magnetic interference. Specifically, we conducted 6
tests in a typical office scenario, with 2 testers collecting test
data for 3 trajectories each. This setup allows for comprehen-
sive assessment of how well the proposed method performs
under realistic indoor conditions where magnetic disturbances
are common.

Figure 5 shows 4 test trajectories estimated using 5 position-
ing schemes in the office building. L-Foot and R-Foot do not
provide accurate test trajectories across all tests due to insuf-
ficient heading observation information. Dual-Foot improves
relative heading observability by using the shortest distance
constraint between both feet (L-Foot and R-Foot). However,
absolute heading remains unobservable, and it only shows
better positioning performance in the fourth test trajectory.
Heading-Step addresses the low accuracy issue in traditional
step-model PDR by incorporating heading estimation from a
quasi-static magnetic field. However, due to frequent magnetic
interference in office scenarios, the criteria for identifying
quasi-static magnetic fields are strict, resulting in infrequent
corrections to heading. As a result, Heading-Step achieves
good positioning accuracy only in the second test trajectory.
The proposed method demonstrates excellent direction and
distance estimation across 4 test trajectories. The estimated
trajectories closely match the reference trajectory, indicating
the highest positioning accuracy among all schemes evaluated.

Figure 6 shows the cumulative density function (CDF) of
position errors for five positioning schemes. The proposed
method demonstrates stable positioning performance, with
errors distributed within 4 meters across all sampling points
in the four tests. Table II presents statistics on the root mean
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Fig. 5. 4 test trajectories estimated using 5 positioning schemes in the office
building.
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Fig. 6. The cumulative density function of position errors for five positioning
schemes in the office building.

square (RMS), 68%, and 95% of position errors for six test
trajectories. The RMS averages for L-Foot, R-Foot, Dual-Foot,
Heading-Step, and Proposed are 8.56m, 6.63m, 2.71m, 4.06m,
and 1.24m, respectively. Compared to L-Foot, R-Foot, and
Dual-Foot, the proposed method reduces positioning errors
by 85.5%, 81.3%, and 54.3%, respectively. This significant
improvement is attributed to the proposed method’s utilization
of magnetic field vectors within a time window to construct
a reliable heading constraint, unaffected by sensor errors and
pedestrian dynamics. By addressing the challenge of unob-
servable absolute heading, the proposed method achieves sub-
stantial performance gains. Furthermore, the proposed method
reduces position errors by 69.4% compared to Heading-
Step, showcasing its robustness against magnetic interference.
Leveraging similarities in magnetic field interference within

local spaces, the differential magnetic field vector method
effectively mitigates magnetic interference on the compass. In
contrast, Heading-Step often fails due to stringent conditions
required for judging quasi-static magnetic fields in office
scenarios. Therefore, the proposed method excels in reliably
correcting heading using magnetic field vectors.

C. Test results in the underground parking lots

Unlike office buildings where magnetic interference orig-
inates from the building structure, underground parking lots
present another typical scenario with frequent magnetic inter-
ference, primarily from parked or moving vehicles. Moreover,
pedestrian dynamics in this setting are more natural, as they are
less influenced by spatial structures. Therefore, this scenario
provides a more comprehensive evaluation of the positioning
performance of the proposed method. We conducted six tests
in a typical underground parking scenario, with two testers
collecting test data for three trajectories each.
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Fig. 7. 4 test trajectories estimated using 5 positioning schemes in the
underground parking lots.

Figure 7 shows four test trajectories estimated using five
positioning schemes in the underground parking scenario.
The proposed method consistently achieves more accurate
estimation of all test trajectories compared to other schemes,
demonstrating its feasibility and high stability. Sub-figures (a)
and (b) reveal noticeable distance errors in the test trajectories
estimated by the proposed method. This discrepancy may arise
from obstacles on the pavement causing gait deviations, where
natural movements of the tester can disrupt the consistent
incremental positioning between the foot and waist.

Figure 8 shows the CDF of the position error for five
positioning schemes. Table III provides statistics on the
RMS, 68%, and 95% position errors for six test trajectories.
The RMS average position errors for L-Foot, R-Foot, Dual-
Foot, Heading-Step, and Proposed are 12.48m, 6.46m, 5.73m,
15.25m, and 2.92m, respectively. The proposed method re-
duces positioning errors by 76.6%, 54.8%, 49.0%, and 80.9%
compared to other methods, respectively. Heading-Step failed
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TABLE II
THE RMS, 68%, AND 95% OF THE POSITION ERRORS IN THE OFFICE BUILDINGS

Test
L-Foot (m) R-Foot (m) Dual-Foot (m) Heading-Step (m) Proposed (m)

RMS 68% 95% RMS 68% 95% RMS 68% 95% RMS 68% 95% RMS 68% 95%

1 12.91 9.76 28.36 12.01 9.20 27.16 3.25 2.87 5.92 6.60 4.43 14.56 1.93 2.22 2.60
2 7.75 4.13 18.19 2.73 2.06 5.68 3.99 3.15 8.90 0.80 0.91 1.24 0.79 0.94 1.19
3 6.80 4.39 16.56 3.30 2.66 7.40 2.90 2.09 7.31 3.98 3.45 9.21 0.86 1.01 1.37
4 7.50 5.74 14.71 11.15 8.33 22.29 0.89 1.03 1.70 3.30 3.02 6.23 0.99 1.26 1.62
5 7.38 4.45 16.68 7.42 4.98 17.10 3.82 2.66 8.27 10.71 7.35 24.06 1.61 1.99 3.02
6 10.44 9.85 20.07 9.46 8.94 18.40 3.08 3.07 5.67 6.05 5.86 11.19 1.75 1.87 3.00

Mean 8.56 5.95 18.65 6.63 5.15 14.14 2.71 2.33 5.60 4.06 3.49 8.08 1.24 1.46 1.99
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Fig. 8. The cumulative density function of position errors for five positioning
schemes in the underground parking lots.

to detect a quasi-static magnetic field in all tests, resulting
in significant heading drift. In contrast, the proposed method
effectively suppresses magnetic interference without requiring
a complex interference detection mechanism, ensuring adapt-
ability across different environments.

In the sixth test, the positioning error of R-Foot is smaller
than that of the proposed algorithm. This discrepancy is
attributed to very minimal gyroscope bias in this particular test,
effectively suppressing position errors caused by heading drift.
Although the proposed method achieves stable heading estima-
tion, the assumption of consistent relative position increments
between the foot and waist remains vulnerable to disruption by
natural human body movements. Despite this, in a statistical
sense, positioning errors caused by natural gait patterns are still
significantly smaller with the proposed method, outweighing
the benefits of improved heading estimation accuracy.

D. Analysis of magnetic interference effects

Using magnetometer observations to provide heading con-
straints for positioning algorithms in indoor environments
necessitates addressing two key challenges: magnetometer bias
correction and magnetic interference suppression. The pro-
posed algorithm treats the magnetometer bias as an unknown

state parameter to be estimated, thus eliminating the need
for users to actively participate in the correction process.
By leveraging the slow variations in magnetic interference
within local spaces and the gradual movement of pedestrians,
the algorithm constructs a relative constraint of the magnetic
vector within a sliding window. This effectively suppresses the
influence of magnetic interference, ensuring more accurate and
reliable heading constraints for indoor positioning.

Figure 9 illustrates the heading based on magnetic ob-
servations, as well as the heading and magnetometer bias
estimated by the proposed method in an underground parking
lot. ’mHeading’ represents the heading estimated from mag-
netometer observations after subtracting the post-estimated
magnetometer bias, while ’gHeading’ indicates the heading
estimated by the proposed method. As shown in Figure 9-(b),
the heading error caused by environmental magnetic interfer-
ence is 9.96° (RMS), with a maximum error of 31.85°. In
contrast, the heading error estimated by the proposed method
is 2.21° (RMS), with a maximum error of 5.42°, reflecting a
reduction of 77.81% and 82.98%, respectively. Figure 9-(c)
shows that the magnetometer biases for the x-axis and y-axis
quickly converge to stable estimated values, while the z-axis
bias exhibits noticeable fluctuations. This can be attributed
to the fact that the plane formed by the x-axis and y-axis is
nearly parallel to the plane on which the user walks, allowing
sufficient dynamic maneuvers to refine the bias estimation
for these axes. The z-axis, however, lacks similar conditions
due to the user’s complex trajectory. Despite this, the residual
magnetometer bias does not significantly impact the accuracy
of the heading estimation.

The above results demonstrate that the proposed method
effectively suppresses magnetic interference in typical indoor
environments (e.g., office and underground parking lot). This
success is primarily due to the positive correlation between
magnetic field attenuation and the cubic power of the distance.
Consequently, the influence range of small-scale magnetic
interference is very limited (e.g., less than 1.5 meters [33]),
while large-scale magnetic interference exhibits slow regional
changes. In typical indoor environments, pedestrians usually
do not move close to the wall, so the magnetic field changes
at the waist are relatively gentle, which ensures that the
assumptions of the proposed method are valid. However, the
proposed method may encounter challenges in environments
with a high concentration of ferromagnetic materials, such as
taking elevators and escalators, and industrial scenes such as
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TABLE III
THE RMS, 68%, AND 95% OF THE POSITION ERRORS IN THE UNDERGROUND PARKING LOTS

Test
L-Foot (m) R-Foot (m) Dual-Foot (m) Heading-Step (m) Proposed (m)

RMS 68% 95% RMS 68% 95% RMS 68% 95% RMS 68% 95% RMS 68% 95%

1 18.85 21.15 34.00 15.50 18.07 28.06 4.74 5.36 8.10 20.15 21.92 36.40 3.35 4.28 4.65
2 17.39 19.41 30.42 6.28 5.03 14.38 5.78 6.72 10.39 22.21 25.08 39.43 5.87 8.06 8.87
3 19.70 20.66 37.38 14.21 15.66 26.66 6.46 6.69 11.74 25.33 25.20 48.28 1.89 2.14 2.82
4 8.11 9.46 14.39 3.15 3.89 5.23 5.07 5.97 8.86 8.46 9.09 15.11 1.95 2.22 2.93
5 6.14 6.55 11.70 6.58 6.90 12.45 6.08 7.26 10.32 10.69 12.32 18.65 2.56 3.09 4.18
6 11.74 12.22 21.83 2.53 2.75 4.51 6.52 7.58 10.67 12.26 12.34 22.22 3.32 3.81 5.08

Mean 12.48 13.63 22.84 6.46 6.87 12.11 5.73 6.55 9.94 15.25 16.36 27.51 2.92 3.53 4.40

power plants. Future work will involve testing the positioning
performance in such scenarios to further evaluate and refine
the proposed method.
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Fig. 9. The heading based on magnetic observations and the heading and
magnetometer bias estimated by the proposed method in an underground
parking lot. (a) Heading, (b) Heading error, (c) Estimated magnetometer bias.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a pedestrian dead reckoning method
based on foot-mounted and waist-mounted IMUs with mag-
netic vector constraints. To address the challenge posed by
the dynamic differences between the foot and waist, the
paper utilizes relative displacement estimated by Foot-INS
to correct the waist-mounted INS. This correction leverages
the consistent relative displacement observed when the foot
touches the ground twice. Additionally, to mitigate the issue
of limited compass availability due to magnetic interference
in typical indoor environments, the paper introduces a method
based on magnetic vector relative change constraints using a
State Cloning Extended Kalman Filter. This approach exploits
the similar characteristics of magnetic interference within
small local spaces to impose a reliable heading constraint
unaffected by significant magnetic interference. The effec-
tiveness of the proposed method was evaluated through 12
tests conducted in typical indoor scenarios such as offices
and underground parking lots. Results demonstrate that the

proposed method achieves superior positioning performance
compared to existing methods by leveraging magnetic vector
constraints, reducing positioning errors by more than 49%
compared to single and dual Foot-INS approaches.

The proposed method can provide reliable position estima-
tion during normal walking, but may fail in complex pedestrian
movements such as climbing, running, and jumping. In the
future, we will try to integrate advanced intelligent algorithms
such as deep learning and reinforcement learning into the pro-
posed algorithm to achieve accurate estimation of pedestrian
movement positions in complex gait patterns and complex
environments. In addition, we will optimize the computational
efficiency of the proposed method to meet the needs of real-
time pedestrian positioning, and improve its adaptability and
positioning performance in embedded systems.
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