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Abstract— Accurate and rapid INS state initialization is crucial
to ensure the performance of vehicular GNSS/INS integrated
navigation. However, in typical urban environments (such as
under viaducts and urban canyons), existing GNSS-assisted
INS state initialization methods are sensitive to observation
outliers. This paper proposes a robust INS state initialization
method for vehicle-mounted GNSS/INS integrated navigation.
The proposed method first derives the error propagation between
the short-term relative navigation (i.e., position, velocity, attitude)
and the INS initial state and the GNSS observation error model;
then, the high-precision relative pose generated by INS is used
to construct constraints between GNSS observation sequences,
and the INS state initialization problem is converted into an
optimization problem; finally, a two-step optimization strategy
is designed to improve the problem of high computational
complexity in solving the full-state optimization problem. We use
six datasets collected in a typical urban environment to verify the
feasibility of the proposed method. The proposed method uses
observation sequences within a 10-second to initialize the heading,
velocity, and horizontal position with errors of 2.50◦, 0.30 m/s,
and 11.1 m, respectively, which are reduced by 73%, 41%, and
14% compared with existing methods.

Index Terms— Global navigation satellite system (GNSS)/
inertial navigation system (INS) integration, navigation initial-
ization, in-motion alignment, vehicular navigation, optimization-
based alignment.

I. INTRODUCTION

INERTIAL Navigation System (INS) based on low-cost
Micro-Electro-Mechanical System (MEMS) Inertial Mea-

surement Unit (IMU) has been extensively deployed in
autonomous or intelligent vehicles to achieve continuous
high-frequency autonomous navigation [1], [2], [3]. However,
INS has the typical characteristics of fast error accumulation
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and is not suitable for long-term use alone. Therefore, INS is
often used in combination with the global navigation satellite
system (GNSS) in vehicle navigation to provide continuous
and reliable positioning services. Since INS is a relative posi-
tioning method, its state (i.e, position, velocity and attitude)
must be initially assigned when it is fused with GNSS, and the
accuracy and efficiency of the initial assignment of the INS
state are directly related to the robustness and effectiveness of
the integrated navigation system [4].

Due to the inherent characteristics and low precision of
MEMS-IMU, INS state initialization usually needs to rely
on other external sensors, including GNSS [5], [6], [7],
Doppler velocity log [8], [9], odometer [10], and magne-
tometer sensors [11]. GNSS is the most commonly used
auxiliary means due to its highest penetration rate. Therefore,
this paper focuses on the INS state initialization method of
GNSS-assisted vehicle-mounted MEMS INS. Existing related
methods can be divided into two categories: (1) Single-epoch
based: These methods derive the initial position, velocity
and heading from a single or double GNSS measurements.
(2) Sequence based: These approaches utilize a series of
GNSS observations over an extended time window (typically
several seconds to minutes) to estimate the initial states.
The sequence-based initialization typically employs either
filtering techniques (such as Kalman filtering) or optimization
algorithms.

A. Single-Epoch Based

GNSS can achieve accurate estimation of position and
velocity using only single epoch observations, which is a
typical initialization method based on single epoch. For atti-
tude initialization, high-precision IMU can achieve accurate
attitude acquisition by sensing gravity acceleration and earth
rotation rate when stationary, while low-cost MEMS IMU
has problems of large noise and large deviation, and heading
initialization faces huge challenges [5]. A typical idea is to
install a pair of GNSS antennas on the same vehicle to directly
obtain the heading of MEMS IMU [6]. However, dual GNSS
antennas will significantly increase the cost, and when the
baseline length between the two GNSS antennas is too short,
the GNSS heading will become very unreliable. Another idea
is to determine the vehicle heading by projecting the GNSS
velocity onto the horizontal plane or based on differential
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positioning of adjacent GNSS positions when the vehicle is
in motion [12], [13], [14]. Although the initialization method
based on single epoch observation is simple and fast, it is
easily affected by factors such as non-line-of-sight (NLOS)
multipath effects and fails to work, and has poor robustness,
especially in complex urban environments.

To mitigate the impact of GNSS gross errors on state
estimation, traditional single-point GNSS quality control meth-
ods usually use the receiver autonomous integrity monitoring
(RAIM) algorithm [15] to improve positioning performance.
However, this method assumes that there is only one gross
error in the GNSS observation, which is obviously unre-
alistic for challenging scenarios. Robust methods based on
M-estimation attempt to reduce the impact of gross errors by
modifying the shape of the cost function and using robust cost
functions like Huber [16]. However, these methods fail when
there are significant initial biases or a high fraction of faulty
satellites in a single epoch.

B. Sequence Based

Sequence-based methods achieve INS state initialization by
fusing GNSS and IMU observation sequence, include filter-
based [10], [17], [18] and optimization-based [19], [20], [21].
Similarly, related research primarily focuses on the heading
alignment problem. Filter-based initialization methods are
usually based on a linearized or non-linear error model, and
then an appropriate filter is selected to estimate the INS
state. For instance, [17] investigated filter-based low-cost
INS initialization methods based on the Unscented Kalman
Filter (UKF), which allows for significant initial error toler-
ances. Reference [7] proposed a two-stage Kalman filter for
achieving GPS-assisted low-cost INS heading alignment. The
heading alignment error of this work can converge to 0.3◦ after
150 seconds of algorithm processing.

Reference [19] proposed an Optimization-Based Alignment
(OBA) method, which equivalently transforms the attitude
initialization problem into a continuous attitude determination
problem using an infinite vector observation. Subsequently,
to further enhance applicability, [22] also conducted online
estimation of GNSS antenna lever arms and IMU biases
based on an optimization method. While the aforemen-
tioned optimization-based initial alignment methods were
initially designed for high-precision inertial navigation sys-
tem, they perform well on navigation-grade IMUs. However,
for low-cost MEMS IMUs, the alignment accuracy of these
methods may decrease significantly when the inertial sensor
biases become much larger [23]. To extend optimization-based
alignment methods to low-cost MEMS IMUs, [21] proposed
the Dynamic OBA algorithm, which estimates gyro biases
with attitudes. Based upon the Dynamic OBA algorithm,
[24] proposed a more efficient implementation. OBA methods
have provided a new perspective on the alignment prob-
lem, and many follow-up studies can be found [25]. For
example, [26] introduced a velocity-based optimization-based
alignment method, determining attitudes based on multiple
velocity vector observations and validating the method on a
tractor platform. The results indicated that under low-dynamic

conditions of 1 m/s, the heading alignment error was 4◦ within
60 seconds.

Although the above methods offer high heading initializa-
tion accuracy, they typically require long convergence time,
such as at least 50 seconds. To improve the heading initial-
ization efficiency, [4], [14], and [27] use the displacement
vector as the observation information based on the prin-
ciple of trajectory similarity to realize the rapid heading
initialization for MEMS IMUs. Reference [4] determines
the initial heading by comparing the Real Time Kinematic
(RTK) absolute trajectory and Dead Reckoning (DR) relative
trajectory, and achieves an initial alignment accuracy of 0.25◦

in 5 seconds. Reference [27] obtain the angle by compare the
actual observed Time Differenced Carrier Phase (TDCP) and
INS-derived TDCP, achieving an alignment accuracy of 0.65◦

within 5 seconds. In general, sequence-based initialization
methods require 5 to 60 seconds of sequence observations to
provide high accuracy and are only applicable to open sky
scenarios. However, in typical urban environments, various
GNSS failures may cause filter-based or optimization-based
methods to fail to converge or even diverge. In addition,
carrier phase observations are very fragile and have low
availability under such conditions. Therefore, the trajectory
similarity-based alignment method proposed by [4] and [27]
may also degenerate or even fail.

Building on the limitations of existing methods identified in
the literature, current GNSS-aided MEMS INS initialization
approaches exhibit two critical shortcomings: (1) degraded
robustness under urban canyon environments due to reliance
on single-epoch GNSS observations, and (2) limited state
estimation capability focusing primarily on heading initializa-
tion. In contrast to state-of-the-art methods [4], [27], [28] that
prioritize open-sky conditions, our proposed sequence-based
framework introduces three key innovations:

• Urban-Optimized robust initialization. The proposed
method takes advantage of the high relative accuracy of
short-term INS and effectively “bridges” the pseudorange
and Doppler observations in the sequence, making it
easier to detect and eliminate observation faults through
residual check, thereby achieving robust initialization of
INS states.

• Enhanced state initialization capability. Unlike conven-
tional approaches that estimate only heading [4], [27],
our method simultaneously resolves four critical states:
horizontal position (2D), vehicle velocity, heading and
accelerometer biases (3D). This comprehensive initial-
ization eliminates the need for separate calibration
procedures required by prior methods.

• Computationally efficient two-step optimization. Aim-
ing at the high complexity of the optimization solution,
a two-step optimization strategy was designed, which
significantly improved the computational efficiency of
INS state estimation.

II. OVERVIEW

In a typical urban environment, due to the influence of
severe signal shielding and multipath effects, GNSS single-
epoch observations have serious gross errors and poor
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Fig. 1. Principle of the proposed initialization method.

satellite geometry. These limitations naturally motivate the
adoption of sequence-based initialization approaches, which
leverage continuous GNSS observations to achieve enhanced
initialization accuracy through temporal integration. How-
ever, when dealing with low-cost MEMS-IMUs, the position
error of INS will reach several meters in a few sec-
onds due to their large bias instabilities and high noise.
This rapid error growth undermines the reliability of the
relative position and attitude relationships that are crucial
for effective sequence-based initialization. Consequently, the
development of robust sequence-based initialization methods
must address both the GNSS fault observation issues in
urban environments and the inherent limitations of low-cost
MEMS-IMUs.

This paper assumes that the errors of short-term INS posi-
tion and velocity are completely attributed to the navigation
state error of the first epoch of the observation sequence, and
uses relative position and velocity to construct the associa-
tion of multi-epoch GNSS pseudorange and Doppler. Finally,
the robust initialization of INS state is achieved by simul-
taneously optimizing INS state errors and detecting GNSS
observation gross errors. Essentially, the vehicle dynamics
obtained by the two observation methods should be objectively
consistent. INS provides continuous relative position, velocity
and attitude, while GNSS provides discrete absolute position
and velocity.

Figure 1 illustrates the basic principle of the proposed
INS state initialization method. The INS state initialization
process can be intuitively understood as translating, scaling,
and rotating the trajectory and velocity obtained by the INS
in order to achieve consistency with the GNSS pseudorange
and Doppler. Among them, translation corresponds to position
initialization, scaling corresponds to velocity initialization and
accelerometer bias estimation, and rotation corresponds to
heading initialization.

TABLE I
DESCRIPTION AND DEFINITIONS OF THE COORDINATE SYSTEMS

III. THE PROPOSED METHOD

Before describing the proposed method in detail, the fol-
lowing assumptions should be clarified:

Assumption 1: We assume that the mounting angle between
the IMU frame and the vehicle frame is known and can be
accurately determined using the method described in [29].

Assumption 2: We assume that the horizontal angles
(i.e. roll and pitch) are known. This assumption is reason-
able because the horizontal angles can be obtained using an
Attitude and Heading Reference System (AHRS) [30], [31].
Importantly, the AHRS in our framework relies only on
accelerometer and gyroscope data for horizontal angles esti-
mation, eliminating the need for external sensors (e.g., mag-
netometers) and ensuring immunity to GNSS measurement
outliers.

The definitions of the main coordinate systems involved in
this paper are listed in Table I.

A. System State Definition

The system states to be estimated in the initialization
problem of this paper can be represented as:

χ =

[
xins xgnss

]
xins =

[
pn

0 v
v
f,0 ψ0 ba,0

]
xgnss =

[
tbias,0 tdri f t,0

] (1)

where xins and xgnss represent the INS-related and GNSS-
related state vector, respectively; pn

0 represents the initial
position vector in the n-frame; vvf 0 represents the initial
forward velocity in the v-frame; ψ0 represents the ini-
tial heading; ba,0 represents the initial accelerometer bias;
tbias,0 =

[
tG
bias,0 tC

bias,0
]

represents the receiver clock bias vec-
tor, include GPS and BDS satellite systems; tdri f t,0 represents
the receiver clock drift; the right subscript “0” represents the
first epoch of the sequence.

In addition, low-cost MEMS IMUs usually have large
initial gyroscope bias and accelerometer bias. Gyroscope
bias directly affects the accuracy of attitude estimation,
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and accelerometer bias directly reduces the accuracy of
velocity estimation. Therefore, for sequence-based INS initial-
ization methods, such errors should be eliminated or estimated
as much as possible. For large gyroscope bias, it is usually
eliminated by subtracting the average value of gyroscope
observations in the stationary state of the carrier in practical
applications, while the residual gyroscope bias has little effect
on the fast initialization method [4]. However, the accelerom-
eter bias does not have similar conditions, and its impact on
velocity estimation is significant. Thus, this paper includes the
initial accelerometer bias ba,0 as an unknown state parameter
to improve the accuracy of the initialization process.

B. INS Error Modeling

Due to the poor performance of low-cost MEMS IMUs,
ignoring small error correction terms such as the earth’s
rotation usually does not lead to significant performance
differences [32], so this paper adopts a simplified inertial
navigation algorithm as follows:

pk = pk−1 + D−1
r vn

k1tk
vn

k = vn
k−1 + Cn

b,k1v
b
k + gn1tk

Cn
b,k = Cn

b,k−1

[
I +1θb

k×
] (2)

where p =
[
ϕ λ h

]T represents the curvilinear position
vector, where the three components denote latitude, longitude
and height, respectively; vn

=
[
vN vE vD

]T represents the
velocity vector in the n-frame, where the three components
denote north, east and down velocity, respectively; Dr =

diag(
[
Rm + h (Rn + h)cosϕ −1

]T
), where Rm is the radius

of curvature in the meridian and Rn is the radius of curvature
in the prime vertical; Cn

b represents the direction cosine matrix
from the b-frame to the n-frame; gn

=
[
0 0 −9.8

]T is Earth’s

gravity vector; 1vb
k =

(
f̃

b
k − ba,k

)
1tk is the velocity incre-

ment in the b-frame; f̃
b

and ba are the acceleration and bias
of the accelerometer, respectively; 1θb

k=
(
ω̃b

k − bω,k
)
1tk

is the angle increment in the b-frame; ω̃b and bg are
the angle rate and bias of the gyroscope, respectively;
1tk = tk − tk−1 is the time interval between the (k −1)-th and
k-th epoch; and × is the cross-product form of a vector.

Although the errors of INS based on low-cost MEMS IMUs
accumulate rapidly over time, the short-term relative accuracy
is still reliable [33]. Based on Eq. 2, this paper models the INS
state error within a short time window as a variable that only
depends on the initial INS state error and the accelerometer
bias error. Next, we derive the attitude, velocity, and position
at time tk as a function of the initial state xins .

1) Attitude: Based on the chain rule of rotation matrices,
the estimated attitude at time tk can be expressed as:

Ĉ
n,k
b,k = Ĉ

n,k
n,0Ĉ

n,0
b,0Ĉ

b,0
b,k (3)

where the notationˆdenotes an unknown or computed variable;
Ĉ

n,k
b,k represents the computed attitude matrix at epoch k;

Ĉ
n,k
n,0 represents the change of the n-frame from epoch 0 to

epoch k, which accounts for the rotation of the n-frame due

to the movement of the vehicle; Ĉ
n,0
b,0 represents the initial

attitude matrix to be determined during alignment at epoch 0.
Ĉ

b,0
b,k = (Ĉ

b,k
b,0)

T , Ĉ
b,k
b,0 represents the integral result of the

gyroscope measurements from epoch 0 to epoch k using Eq. 2.
Then, we made the following approximations:

Approximation 1: Cn,k
n,0 ≈ I . The rationale for this approx-

imation lies in the fact that the rotation of the n-frame due to
vehicle motion can be considered negligible over a short time
interval (e.g., less than 30 seconds).

Approximation 2: Ĉ
b,0
b,k ≈ Cb,0

b,k . This approximation is jus-

tified because the error in Ĉ
b,0
b,k primarily arises from gyroscope

measurement errors, including residual bias, scale factor error,
non-orthogonality error, and random noise. During the initial
alignment period, the error in Ĉ

b,0
b,k is significantly smaller than

the heading error in Ĉ
n,0
b,0 [4]. Eq. 3 can be rewritten as:

Ĉ
n,k
b,k = Ĉ

n,0
b,0Cb,0

b,k (4)

Then the errors contained in the computed matrix Ĉ
n,k
b,k only

come from the error in Ĉ
n,0
b,0. According to Assumption 2, the

roll and pitch angles could be determined by AHRS with an
error notably smaller than the initial heading. Therefore, it’s
reasonable to assume that the only unknown parameter in Ĉ

n,0
b,0

is the heading angle.
2) Velocity: Similarly, the velocity at time tk computed by

integrating the accelerometer observations can be expressed as:

v̂
n
k = v̂

n
0 +

k∑
j=1

Ĉ
n, j
b, j1v̂

b
j −

k∑
j=1

gn1t j

= Ĉ
n,0
b,0Cb

v v̂
v
0 +

k∑
j=1

Ĉ
n,0
b,0Cb,0

b, j

(
f̃

b
j − b̂a,0

)
1t j −

k∑
j=1

gn1t j

= Ĉ
n,0
b,0Cb

v v̂
v
0 +

k∑
j=1

Ĉ
n,0
b,0Cb,0

b, j f̃
b
j1t j

−

k∑
j=1

Ĉ
n,0
b,0Cb,0

b, j b̂a,01t j −

k∑
j=1

gn1t j (5)

where Cv
b =

(
Cb
v

)T
represents the direction cosine matrix

from the b-frame to the v-frame, which is a known parameter
according to Assumption 1; v̂v0 =

[
v̂
v
fw,0 0 0

]
represents the

velocity vector in the v-frame, v̂vfw,0 represents the initial
forward speed of the vehicle. This paper assumes that the
vehicle meets the non-holonomic constraints that the lateral
and vertical velocities are zero; b̂a,0 represents the accelerom-
eter bias over a short time window is modeled as a constant.
The computed velocity v̂

n
k at time tk is mainly affected

by Ĉ
n,0
b,0, v̂v0, and b̂a,0.

3) Position: The position at time tk can be computed by
integrating the velocity:

p̂n
k = p̂n

0 +

k∑
i=1

v̂
n
i 1ti (6)
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Substituting Eq. 5 into Eq. 6, we have:

p̂n
k = p̂n

0 +

k∑
i=1

(
Ĉ

n,0
b,0Cb

v v̂
v
0

)
1ti

+

k∑
i=1

 i∑
j=1

Ĉ
n,0
b,0Cb,0

b, j f̃
b
j1t j

1ti

−

k∑
i=1

 i∑
j=1

Ĉ
n,0
b,0Cb,0

b, j b̂a,01t j

1ti

−

k∑
i=1

 i∑
j=1

gn1t j

1ti (7)

The computed position p̂n
k at time tk is influenced by p̂n

0 ,
Ĉ

n,0
b,0, v̂v0, and b̂a,0.

C. INS Error Propagation Analysis

The previous section established the functional relationship
between the INS-derived states (attitude, velocity, and posi-
tion) at time tk and the initial state xins , while intentionally
omitting the effects of residual gyroscope biases and ran-
dom measurement noise. To justify this modeling approach,
we now present a comprehensive error analysis focusing on
the dominant IMU error sources that influence short-term INS
performance.

The IMU measurements errors include random noise,
biases, and scale factor errors. Given that random noise
and scale factor effects are negligible over short times-
pans [4], our analysis concentrates on bias-induced errors. The
gyroscope bias bg directly contaminates attitude estimation,
subsequently affecting the specific force projection in the
navigation frame. Following the derivation in [13], under
constant-velocity motion assumptions, the residual gyroscope
bias-induced errors propagate as:

δψ ≈ bgt

δvn
≈

1
2

Cn
b(bg × gn)t2

δrn
≈

1
6

Cn
b(bg × gn)t3

(8)

where ψ, δvn, δrn denotes attitude error, velocity error and
position error, respectively. Considering that the dominant
constant bias can be pre-calibrated through static periods, the
residual gyro bias (including Earth rotation crate) is typically
bounded below 18 deg/h [14]. For a 10-seconds initialization
window, this yields: δψ ≈ 0.05◦, δvn

≈ 0.043 m/s, δrn
≈

0.143 m. These errors remain negligible compared to typical
state initialization errors, justifying our exclusion of residual
gyro bias in the state vector.

Given that velocity is obtained through the integration of
acceleration and position is derived from the integration of
velocity, the impact of accelerometer biases ba on velocity
and position errors can be expressed as: δv

n
≈ Cn

b ba t

δrn
≈

1
2

Cn
b ba t2 (9)

For low-cost MEMS accelerometers with typical bias
instability of 0.05 m/s2, the 10-seconds error accumulation
becomes: δvn

≈ 0.5 m/s, δrn
≈ 2.5 m. This non-negligible

error necessitates explicit modeling of accelerometer biases
in our optimization problem. Therefore, we include ba as
estimated parameters to improve initialization accuracy.

D. Pseudorange and Doppler

In complex urban environments, the GNSS/INS tight com-
bination can use GNSS raw observations, and the positioning
performance in some sky-blocked areas is better than that
of the GNSS/INS loose combination. To this end, this paper
uses GNSS raw observations to initialize the INS state to
ensure efficiency and robustness. Due to the low fragility
and availability of carrier phase observations in complex
environments, this study only uses pseudorange and Doppler
observations. Pseudorange observations can be expressed as:

ρ̃
s j
k = ρ

s j
k + c

(
t
s j
bias,k − tbias,k

)
+ I

s j
k + T

s j
k + M

s j
k + ε

s j
ρ

(10)

where the subscript k represents the epoch number and the
superscript s j represents the j-th satellite; ρ

s j
k represents

the geometric distance between the GNSS receiver and the
satellite; c represents the speed of light; t s

bias,k represents the
satellite clock bias, which can be obtained from ephemeris;
tbias,k represents the receiver clock bias; I

s j
k and T

s j
k rep-

resent the ionospheric and tropospheric delays, respectively,
atmospheric errors are modeled and subtracted following the
methods in RTKLIB [34]; M

s j
k represents the multipath effect;

ε
s j
ρ represents the measurement noise, assumed to follow a

zero-mean Gaussian distribution, such that εs
ρ ∼ N (0, (σ

s j
ρ )

2).
The standard deviation of σ

s j
ρ of ε

s j
ρ is modeled as an elevation

angle model:

σ
s j
ρ =

√√√√ σ 2
ρ

sin2(el
s j
k )

(11)

Here σρ is the priori zenith pseudorange measurement standard
deviation, and el

s j
k signifies the satellite elevation angle as seen

from the receiver at epoch tk . Ignoring the lever arm between
the GNSS antenna and the IMU, single pseudorange residual
can be expressed as:∥∥∥es j

k,ρ

∥∥∥2

σ
s j
k,ρ

=

∥∥∥ρ̃s j
k − hs j

ρ,k
(
xins, tbias,k

)∥∥∥2

σ
s j
k,ρ

(12)

hs j
ρ,k

(
xins, tbias,k

)
=

∥∥∥ ps j
k − p̂ins,k

∥∥∥ + c · tbias,k (13)

where p̂ins,k is the position predicted by INS and ps j
k is the

satellite position. Doppler are modeled as:

D̃
s j
k = −

1
λ

[
Es j

k

(
v

s j
k − vk

)
+ c

(
tdri f t,k − t s

dri f t,k

)]
+ ε

s j
D

(14)

where λ represents the carrier wavelength; v
s j
k and vk repre-

sent the satellite and receiver velocity vectors, respectively;
Es j

k represents the line-of-sight (LOS) unit vector from the
receiver to the satellite; t s

dri f t,k is the satellite clock drift,
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reported in the navigation message; ε
s j
D represents the Doppler

measurement noise, assumed to follow a zero-mean Gaussian
distribution, such that ε

s j
D ∼ N (0, (σ

s j
D )

2).The standard devia-
tion of σ

s j
D of ε

s j
D is modeled as:

σ
s j
D =

√√√√ σ 2
D

sin2(el
s j
k )

(15)

Here σD is the priori zenith Doppler measurement standard
deviation. Then, the Doppler measurement residual at epoch
tk can be formulated as:

∥es j
k,D∥

2
σ

s j
k,D

= ∥D̃
s j
k − hs j

D,k(xins, tdri f t,k)∥
2
σ

s j
k,D

(16)

hs j
D,k(xins, tdri f t,k) = −

1
λ

[
Es j

k

(
v

s j
k − v̂ins,k

)
+ c · tdri f t,k

]
(17)

where tdri f t,k denotes the receiver clock drift at epoch k, which
can be modeled as constant over short periods. The receiver
clock bias at epoch k (i.e., tbias,k) can be modeled using the
clock drift model:{

tdri f t,k = tdri f t,0

tbias,k = tbias,0 + tdri f t,0 (tk − t0)
(18)

E. Two-Step Optimization Algorithm

Based on the INS error model, pseudorange and Doppler
observation model, the INS state initialization problem can
be transformed into a state estimation problem, and accurate
state estimation can be achieved by solving the following
optimization problem:

χ = ar g min
χ

N∑
k=1

Sk∑
j=1

(∥∥∥es j
k,D

∥∥∥2

σ
s j
k,D

+

∥∥∥es j
k,ρ

∥∥∥2

σ
s j
k,ρ

)
(19)

where N denotes the length of the observation sequence;
Sk represents the number of satellites at epoch tk . The Gauss-
Newton method [35] was used to solve the above optimization
problem. However, in complex urban environments, satellite
signals are susceptible to multipath and non-line-of-sight
signals, and there are significant errors in pseudorange and
Doppler observations, which leads to the challenge of opti-
mization failing to converge to the global minimum. To this
end, the Huber robust kernel function [16] is used to reduce
the impact of pseudorange and Doppler gross errors on the
accuracy of nonlinear optimization. The optimization problem
can be further expressed as:

χ = ar g min
χ

N∑
k=1

Sk∑
j=1

Θ

(∥∥∥es j
k,D

∥∥∥2

σ
s j
k,D

+

∥∥∥es j
k,ρ

∥∥∥2

σ
s j
k,ρ

)
(20)

where the Huber norm is defined as:

Θ(s) =

{
s, s ≤ 1
2
√

s − 1, s > 1.
(21)

Due to the characteristics of the GNSS signal structure,
Doppler are typically an order of magnitude more accurate
than pseudorange [36], we design a two-step optimization

method to achieve more robust and efficient state estima-
tion. Specifically, we first solve the initial velocity, heading,
accelerometer bias, and clock drift based on Doppler; then,
we solve the initial position and clock bias based on pseudo-
range. Let:

χ1 =
[
vvfw,0 ψ0 ba,0 tdri f t,0

]
(22)

χ2 =
[

pn
0 tbias,0

]
(23)

Thus, to solve the initialization problem, the first step is:

χ1 = ar g min
χ

N∑
k=1

Sk∑
j=1

Θ

(∥∥∥es j
k,D

∥∥∥2

σ
s j
k,D

)
(24)

and the second step is:

χ2 = ar g min
χ

N∑
k=1

Sk∑
j=1

Θ

(∥∥∥es j
k,ρ

∥∥∥2

σ
s j
k,ρ

)
(25)

Since the state estimation process is non-linear with respect
to some of the system states, its performance is affected by the
initial values. In this paper, the initial values of position and
velocity are obtained through SPP with the Huber robust cost
function, while the initial values of clock bias and clock drift
are directly set to zero due to their linearity. The initial heading
is obtained by averaging the compensated gyro-integrated
heading from multiple GNSS velocity headings as follows:

ψ0,ini t =
1
N

N∑
k=1

(ψk,gnss −1ψ0,k) (26)

where ψ0,ini t represents the calculated initial heading at
epoch 0; ψk,gnss denotes the heading at epoch k derived
from GNSS velocity measurements; 1ψ0,k represents the
INS-derived heading change from epoch 0 to epoch k. The
averaging over k epochs reduce the impact of noise and
improve the accuracy of the initial heading. The imple-
mentation process of the proposed method is presented in
Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Experiments Description

To evaluate the performance of the proposed INS state
initialization method, multiple vehicle road test experiments
were conducted in a typical GNSS challenge environment
in Wuhan. Figure 2 shows the installation structure of the
equipment used in the experiment. INS-Probe is a test device
used to evaluate the performance of the proposed method.
It is a GNSS/MEMS-IMU integrated module independently
developed by our project team, integrating MEMS IMU
ICM20602 and ublox F9P, and has millimeter-level time
synchronization capability. ICM20602 provides IMU data
with a sampling rate of 200 Hz; ublox F9P supplies single-
frequency BDS/GPS pseudorange and Doppler observations
with a data rate of 1 Hz. The main parameters of ICM20602
are listed in Table II. The ground truth equipment includes
a navigation-grade IMU (LD-A15, Lide Space Information
Technology Co., Ltd., China), a professional GNSS receiver
(Panda, Panda Space-Time Technology Co., Ltd., China) and
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Algorithm 1 Proposed INS Navigation State Initialization
Method
Require:

IMU data sequence;
Pseudorange measurements sequence;
Doppler sequence;

Ensure:
INS position, velocity and heading at current time;

1: Determine initial values of INS states;
2: Calculate attitude, velocity, and position sequences by

integrating IMU measurements using Eq. 2;
3: Construct Doppler observation residuals Eq. 24;
4: Solve Eq. 24 using the Gauss-Newton method until con-

vergence or the preset maximum number of iterations is
reached;

5: if Eq. 24 converges then
6: Construct pseudorange observation residuals Eq. 25;
7: Solve Eq. 25 using the Gauss-Newton method until con-

vergence or the preset maximum number of iterations
is reached;

8: if Eq. 25 converges then
9: Calculate INS position, velocity and heading at cur-

rent time.
10: end if
11: end if

Fig. 2. Experiment platforms.

a high-precision wheel odometer. The ground truth is achieved
by a smoothed PPK/INS/odometer integration method, achiev-
ing position accuracy better than 1m, attitude accuracy better
than 0.01 degrees, and velocity accuracy better than 5cm/s.
Equipment not marked in the figure is not related to this study.

Figure 3 shows the trajectories and locations of the three
routes used in the vehicle experiments, passing through various
GNSS-vulnerable scenarios such as alleys, urban canyons, and
under overpasses. The dataset covers three complex urban
routes, with two sets of data collected for each route. The
two sets for Route A were independently collected, while the
datasets for Routes B and C were collected simultaneously
using two INS-Probe units in a single test. The total duration of

TABLE II
PERFORMANCE PARAMETERS OF ICM20602

Fig. 3. Experimental trajectories (from Google Earth).

TABLE III
VEHICLE MOTION INFORMATION IN THE EXPERIMENTS

the data is approximately 8 hours. Table III provides detailed
motion information for each dataset.
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B. Data Processing

After the vehicle road test data is collected, the GNSS
raw observations (single-frequency BDS/GPS pseudorange +
Doppler) and IMU data are divided into small segments
(e.g., 10 seconds per segment) to simulate the working condi-
tions of INS state initialization in real application scenarios.
The segment length is set to 10 seconds as a result of
comprehensive consideration of the efficiency and accuracy
of INS state initialization. For more details on the impact
of segment length on the accuracy of INS state initializa-
tion, see section IV-D.3. It is worth noting that although
we use post-processing to perform performance evaluation,
the proposed method can also be performed under real-time
navigation working conditions. The specific process of data
processing is as follows:

1) Low-speed Data Exclusion: Since the initial heading of
the proposed method becomes unobservable when the
vehicle speed is zero, only data corresponding to vehicle
speeds exceeding 1 m/s are considered in the performance
evaluation of the method.

2) Sample Extraction: 10 seconds of continuous IMU obser-
vations and GNSS pseudorange and Doppler data are used
as 1 sample for INS state initialization.

3) Algorithm Execution: The proposed algorithm is executed
using the data samples generated in step 2 as input.

4) Error Calculation: The output of the proposed algorithm
is compared with the reference value, and the difference
is the heading error, velocity error, and position error of
one sample.

5) Repeat steps 1-4 until all samples in the dataset have been
processed.

To verify the effectiveness of the proposed method and
evaluate the accuracy of INS state initialization, we compared
the following methods:

• RTKLIB [34]: A widely used single epoch based
initialization method. RTKLIB uses a simple RAIM
algorithm and chi-square test for GNSS quality control,
and the SPP solution directly provides the initial posi-
tion and velocity. At the same time, the arc tangent of
the estimated GNSS velocity is used to calculate the
initial heading.

• OB-SPP: Improved single-epoch initialization method.
To mitigate the impact of pseudorange and Doppler
gross errors, the Huber robust kernel function is used to
improve the position and velocity estimation accuracy of
the SPP scheme. Similarly, the initial heading is obtained
by taking the arc tangent of the velocity.

• Chen [4]: A sequence-based heading initialization
method proposed by our team in previous work. The
principle of this method is as follows: The relative trajec-
tory of the vehicle is calculated by using the MEMS-gyro
observations to estimate the attitude of the vehicle and the
travel distance provided by GNSS. The initial heading is
then calculated by comparing DR-indicated with GNSS-
indicated trajectories. The GNSS position provided by the
RTKLIB solution was used as input to this method for
heading initialization.

Fig. 4. CDF of heading error for RTKLIB, OB-SPP, Chen, and the proposed
method using six datasets.

• Proposed: The INS state initialization method proposed
in this paper.

C. INS State Initialization Error

We evaluate the proposed method using six datasets col-
lected in urban complex environments and compare it with
RTKLIB, OB-SPP, and Chen methods. Among them, Chen is
an INS heading initialization method, and the relevant com-
parative analysis is only performed on the heading error part.

1) Heading Error: Fig. 4 shows the Cumulative Density
Function (CDF) of the heading error for the four methods
using six datasets. Root Mean Square (RMS) of heading error
for the four methods using six datasets are shown in Table IV.
The average heading error for RTKLIB, OB-SPP, and Chen are
10.57◦, 9.43◦, and 11.47◦, respectively. The heading errors
for the proposed method using six datasets ranges from 0.95◦

to 3.23◦, and the average heading error is 2.50◦. Compared
with the existing methods, the proposed method reduces the
heading error by 76%, 73%, and 78% respectively, achieving
robust heading initialization at the degree level.

In complex urban environment, multipath effect and NLOS
can cause a large number of GNSS pseudorange and Doppler
observation gross errors, and the heading initialization scheme
based on RTKLIB uses RAIM algorithm to deal with this
phenomenon. Moreover, RTKLIB assumes that there is only
one observation error, which is seriously inconsistent with
the actual situation, resulting in low accuracy of heading
initialization. To address this problem, OB-SPP uses the
Huber robust kernel function to reduce the impact of the
error, releasing the assumption that there is only one error
in GNSS observations, so that a higher-precision initialization
heading can be obtained. In Table IV, the heading error of
OB-SPP relative to RTKLIB is only reduced from 10.57◦

to 9.43◦. This is because RTKLIB performs a chi-square test
on some areas with severe errors and excludes some errors
from the final statistical results. In fact, OB-SPP has a more
obvious improvement in initial heading accuracy relative to
RTKLIB. Nevertheless, when the proportion of faulty satellite
observations in an epoch is high, the heading initialization
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TABLE IV
RMS OF HEADING ERROR FOR RTKLIB, OB-SPP, CHEN, AND THE PROPOSED METHOD USING SIX DATASETS (UNIT: ◦)

Fig. 5. Heading error for RTKLIB, OB-SPP, Chen, and the proposed method
using dataset A1, B1 and C1.

accuracy of OB-SPP will still drop sharply. Compared with the
single-epoch based initialization method, the proposed method
cleverly utilizes more GNSS observations with the help of the
high-precision relative pose of INS, dilutes the proportion of
faulty satellites, makes gross errors easier to identify, and has
better robustness.

Our previous work (Chen [4]) achieved the heading initial-
ization accuracy of 4.7◦ with 98.6% confidence in 5-second
sequence length in SPP mode. However, the results from this
study show that the average heading error of this method is
only 11.47◦, which seems lower than expected. This discrep-
ancy is mainly due to differences in the datasets: the datasets
in this study were primarily collected in complex urban envi-
ronments, where significant GNSS gross errors lead to large
SPP position errors, greatly affecting the heading initialization
accuracy. Additionally, the datasets were collected on an urban
road with relatively heavy traffic, and the average vehicle
speed was lower than the average speed of 15 m/s in [4],
which would result in higher noise in the heading estimation.

Fig. 5 shows the heading error for the four initializa-
tion methods using dataset A1, B1 and C1. The proposed
method significantly outperforms all the other comparison

Fig. 6. Heading error for RTKLIB, OB-SPP, Chen, and the proposed method
at different time periods.

methods and shows excellent robustness in challenging urban
environment. For further illustration, we select several road
sections from Fig. 5. Figure 6 (a) shows the heading error
corresponding to a short passage under an overpass. The chi-
square test in RTKLIB eliminated some samples with serious
gross errors, which resulted in the Chen method being unable
to complete heading initialization normally due to the lack of
available GNSS positions. As the gross error ratio of satellite
observations under the overpass increases, the heading error of
OB-SPP also increases significantly. In contrast, since the pro-
posed method uses a GNSS observation sequence, the number
of available satellite observations is increased, the proportion
of faulty satellites is diluted, and faulty satellites are easier to
identify and eliminate, so there is no decrease in the accuracy
of heading initialization. A similar phenomenon is observed in
Fig. 6 (b). However, if the proportion of satellite observation
errors is still high in the entire observation sequence, as shown
in Fig. 6 (c), the performance of the proposed method will also
drop significantly. Nevertheless, it is still more robust than
the single-epoch based method due to the averaging effect of
multiple epochs. In rare cases, such as around sample 2160 in
Fig. 6 (d), the heading initialization accuracy of the proposed
method may be lower than that of OB-SPP because most
of the satellite observations in the observation sequence are
errors. Overall, the proposed method undoubtedly shows the
best robustness.

2) Velocity Error: Fig. 8 shows the CDF of the velocity
error for the three methods using six datasets. RMS of velocity
error for the three methods using six datasets are shown
in Table V. The average velocity error for RTKLIB and
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Fig. 7. Velocity error for RTKLIB, OB-SPP, and the proposed method using
datasets A1, B1, C1.

Fig. 8. CDF of velocity error for RTKLIB, OB-SPP, and the proposed method
using six datasets.

OB-SPP are 0.80 and 0.51m/s, respectively. The velocity
error for the proposed method using six datasets ranges from
0.07 to 0.44 m/s, and the average velocity error is 0.30 m/s.
Compared with the existing methods, the proposed method
reduces the velocity error by 62% and 41%, respectively.

Fig. 7 shows the velocity error for the three methods using
datasets A1, B1, C1. Similar to heading initialization, the
proposed method can effectively suppress the influence of
GNSS observation errors and obtain the highest accuracy
velocity initialization. The reason is that Doppler observations
can directly correct velocity errors and play a greater role in
heading initialization than pseudorange observations. There-
fore, both heading and velocity initialization have achieved
significant accuracy improvements, and the performance of
state estimation errors is relatively consistent.

3) Position Error: Fig. 10 shows horizontal position error
for the three methods using datasets A1, B1, C1. Fig. 9 shows
the CDF of the horizontal position error for the three methods

TABLE V
RMS OF VELOCITY ERROR FOR RTKLIB, OB-SPP, AND THE

PROPOSED METHOD USING SIX DATASETS (UNIT: M/S)

Fig. 9. CDF of horizontal position error for RTKLIB, OB-SPP, and the
proposed method using six datasets.

using six datasets. RMS of horizontal position error for the
three methods using all datasets are shown in Table V. The
average error of horizontal position for RTKLIB and OB-SPP
are 14.2 and 12.9 m, respectively. The horizontal position
error for the proposed method using six datasets ranges from
5.2 to 13.9 m, and the average horizontal position error is
11.1 m. Compared with the existing methods, the proposed
method reduces the horizontal position error by 21% and
14%, respectively. The proposed method does not significantly
improve the position initialization accuracy. The reason is that
the essence of the proposed method is to use high-precision
INS relative pose to suppress pseudorange observation errors
in dynamic environments, but it is very dependent on the error
distribution characteristics of pseudorange observations. The
signal baseband processing method in GNSS receivers usually
uses high-intensity filtering to output continuous pseudor-
ange observations in complex urban environments, resulting
in very strong time correlation of pseudoranges within a
10-second time window, which limits the benefits of the
proposed method.

D. Ablation Experiment

This section mainly discusses the impact of various
parameter settings in the proposed algorithm on the accu-
racy of INS state initialization, including two-step opti-
mization, accelerometer bias estimation and observation
sequence length.
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TABLE VI
RMS OF HORIZONTAL POSITION ERROR FOR RTKLIB, OB-SPP, AND

THE PROPOSED METHOD USING SIX DATASETS (UNIT: M)

Fig. 10. Horizontal position error for RTKLIB, OB-SPP, and the proposed
method using datasets A1, B1 and C1.

1) Two-Step Optimization: Fig. 11 shows the CDF of the
time consumed by one-step optimization and two-step opti-
mization. One-step optimization is to solve all the parameters
to be estimated uniformly. The RMS values for time con-
sumption of one-step and two-step optimization are 76.08 ms
and 21.45ms respectively. The proposed two-step optimization
strategy reduces the average time consumption by 71.80%.
The main reasons include: On the one hand, the complexity
of solving the optimization problem can be roughly considered
to be proportional to the cube of the state dimension. Solving
the low-dimensional state through two-step optimization can
effectively reduce the overall complexity. On the other hand,
GNSS Doppler has higher accuracy, and the corresponding
speed and heading states are more observable. The two-step
optimization can achieve the same estimation accuracy with
fewer iterations. One-step optimization uses GNSS pseu-
dorange and Doppler at the same time. Due to the large
pseudorange observation error and the short vehicle trajectory,
the observability of the position is significantly lower, resulting
in more iterations and a significant increase in computational
complexity.

Fig. 11. CDF of the time consumed by one-step optimization and two-step
optimization.

Fig. 12. Effect of accelerometer bias estimation on heading and velocity
initialization errors when using dataset C1.

2) Accelerometer Bias Estimation: Low-cost MEMS IMUs
often exhibit significant accelerometer bias, which directly
affects the accuracy of short-term velocity calculations and,
in turn, significantly degrades the accuracy of INS state initial-
ization. Unlike gyroscope bias, which can be easily removed
using static periodic data, the proposed method incorporates
accelerometer bias into the estimated state to remove its effect.

Fig. 12 shows the heading and velocity initialization errors
before and after estimating the accelerometer bias using
dataset C1. Table VII summarizes the velocity and heading
initialization RMSE before and after estimating the accelerom-
eter bias using dataset C1. The velocity initialization error
has a systematic bias of 0.4 m/s when the accelerometer bias
is present, while the velocity error fluctuates around zero
when the accelerometer bias is used as the estimated state.
In addition, the heading initialization error is also reduced
by estimating the accelerometer bias. Overall, estimating the
accelerometer bias reduces the heading and velocity initializa-
tion errors by 19% and 38%, respectively.

Fig. 13 shows the estimated x-axis accelerometer bias (along
the vehicle’s moving direction) versus the reference value
(obtained by GNSS/INS integrated navigation solution). The
estimated accelerometer bias is very close to the reference
value, but the estimated accelerometer bias has significant
noise and outliers. The reason is that the accelerometer bias
estimation accuracy is related to the Doppler velocity accuracy,
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TABLE VII
RMS OF HEADING AND VELOCITY INITIALIZATION ERRORS

WHEN USING DATASET C1

Fig. 13. Comparison of estimated and true x-axis accelerometer bias.

Fig. 14. RMSE of velocity and heading error corresponding to different
observation sequence lengths when using dataset C1.

and the Doppler observation error ratio in the sliding window
can cause significant fluctuations.

3) Observation Sequence Length: The proposed initializa-
tion method uses INS to establish the connection between
GNSS observations within a preset time window, and achieves
robust INS state initialization by increasing the number of
available satellite observations and diluting the proportion
of faulty satellites. However, observation sequence length
(i.e., time window) cannot be extended indefinitely. The reason
is that as time increases, small error corrections will also have
significant negative effects. At the same time, the extension of
the time window will significantly increase the computational
load, which contradicts the design goal of fast initialization.

Fig. 14 shows the effect of different observation sequence
length on the velocity and heading initialization accuracy
when using dataset C1. When the observation sequence length
increases from 5 seconds to 30 seconds, the heading initial-
ization error decreases from 4.24◦ to 1.37◦. However, the
heading initialization accuracy does not improve with the

increase in time length, and even decreases slightly, because
errors such as gyroscope bias become non-negligible at long
time scales. In addition, as the observation sequence length
increases from 5 seconds to 40 seconds, the speed initialization
error decreases from 0.45 m/s to about 0.2 m/s. Considering
the INS state initialization response efficiency and estimation
accuracy, this study recommends that the observation sequence
length be set to 10 to 20 seconds.

V. CONCLUSION

This study proposes a robust INS state initialization method
assisted by GNSS pseudorange and Doppler observation
sequences for typical urban environments. The proposed
method uses the high-precision relative pose generated by INS
to construct constraints between GNSS observation sequences,
transforms the INS state initialization problem into an opti-
mization problem, and achieves robust and efficient INS state
initialization through a two-step optimization solution.

We conducted six route tests in typical urban scenarios, such
as under viaducts and urban canyons. The test results show that
the proposed method can provide the average error of 2.50◦

for heading, 0.30 m/s for velocity, and 11.1 m for horizontal
position using a 10-second time window, which are reduced
by 72%, 41%, and 14% respectively compared with the
existing methods. In addition, we discuss the impact of the
observation sequence length on the accuracy of INS state
estimation and recommend setting the observation sequence
length to 10 to 20 seconds in order to achieve a balance
between initialization efficiency and accuracy.

This work focuses on fast and robust initialization of
INS states in typical urban environments, and has achieved
significant performance improvements. In the future, we will
try to use this method to improve the robustness of GNSS
observations during the navigation phase, so as to achieve con-
tinuous and reliable positioning in typical urban environments.
Moreover, this method is applicable to any carrier in outdoor
scenarios, and we will also try to further verify its performance
on carriers such as pedestrians and drones.
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