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MSC-LIO: An MSCKF-Based LiDAR-Inertial
Odometry With Same-Plane Cluster Tracking

Tisheng Zhang , Man Yuan , Linfu Wei , Hailiang Tang , and Xiaoji Niu

Abstract—The multistate constraint Kalman filter
(MSCKF) has been proven to be more efficient than graph
optimization for visual-based odometry with a similar
accuracy. However, it has not been adequately considered
and studied for light detection and ranging (LiDAR) based
odometry. In this article, we propose a novel tightly coupled
LiDAR-inertial odometry (LIO) based on the MSCKF
framework, named MSC-LIO. An efficient LiDAR same-plane
cluster (LSPC) tracking method, without explicit feature
extraction, is present for frame-to-frame data associations.
The tracked LSPC is used to build an LSPC measurement
model that constructs multistate constraints. Besides, we
propose an effective point-velocity-based LiDAR-inertial
measurement unit time-delay (LITD) estimation method,
which is derived from the proposed LSPC tracking method.
To validate the effectiveness and robustness of the
proposed method, we conducted extensive experiments
on both public datasets and real-world environments.
The results demonstrate that the proposed MSC-LIO
yields higher accuracy and efficiency compared with the
state-of-the-art methods. Ablation experiments indicate
that the data-association efficiency is improved by nearly
three times with the LSPC tracking, and the proposed LITD
estimation method can effectively and accurately estimate
the LITD. Besides, MSC-LIO was implemented on an edge
device and demonstrated excellent real-time performance.

Index Terms—Light detection and ranging (LiDAR) iner-
tial odometry (LIO), multisensor fusion navigation, multi-
state constraint Kalman filter (MSCKF), state estimation.
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I. INTRODUCTION

L IGHT detection and ranging (LiDAR) has played an in-
creasingly important role in autonomous vehicles and

robots, mainly due to its spatial perception capabilities and the
rapid development of low-cost solid-state LiDARs. Meanwhile,
the inertial measurement unit (IMU) can be employed for nav-
igation independently, and the inertial navigation system (INS)
can output high-frequency poses [1]. Hence, the INS can be
adopted to correct the motion distortion of point clouds. For
this reason, the LiDAR and the IMU have been integrated to
construct the LiDAR-inertial odometry (LIO) for more accurate
pose estimation. LIOs can be categorized as optimization based
and filter based depending on the type of the state estimator. Gen-
erally, graph optimization provides higher accuracy than filters
but at the cost of lower efficiency [2]. The multistate constraint
Kalman filter (MSCKF) [3] has been proven to achieve similar
accuracy to graph optimization while being more efficient in
visual-inertial odometry (VIO) [4], [5]. Recently, some studies
[6], [7], [8] have explored the application of MSCKF in LIOs
and proved that the MSCKF achieves higher accuracy than
other filters for LiDAR-inertial navigation. Nevertheless, the
data-association method and the LiDAR measurement model in
MSCKF-based LIOs should still be further studied for efficient
and accurate state estimation.

A. Related Works

1) Optimization-Based Methods: Some studies employ
frame-to-map (F2M) association methods for LiDAR. LIO
mapping [9] and GIVL-simultaneous localization and mapping
(SLAM) [10] built a local feature map within a sliding window
and matched LiDAR features (edges and planes) to the map.
LIO-SAM [11] built a voxel map for edge and planar features
and applied a sliding window-based F2M scan-matching method
to derive LiDAR measurements. However, F2M association may
produce incorrect absolute measurements, resulting in inconsis-
tent state estimation [12]. In contrast, frame-to-frame (F2F) as-
sociation constructs relative measurements and ensures consis-
tent state estimation. LIOs based on F2F association can seam-
lessly integrate with absolute positioning sensors, such as the
global navigation satellite system (GNSS) [13] and ultrawide-
band (UWB) [14]. Thus, some studies on LIO have shifted their
focus to F2F association methods. LIPS [15] proposed an anchor
plane factor that associates multiple LiDAR frames. VILENS
[16] tracked plane and line features across multiple frames
and constructed corresponding landmark factors. BA-LINS [17]
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developed an F2F bundle adjustment (BA) measurement model
for LiDAR. The BA measurements were derived from the
same-plane points in the keyframes within a sliding window.
The same-plane points were obtained through direct point-cloud
processing [12], [18], which is more efficient than the feature
extraction methods used in [9], [10], [11], [15], and [16].

The above methods rely on optimization frameworks, which
require multiple iterations and suffer from low efficiency. In
contrast, filters offer higher efficiency but at the cost of reduced
accuracy. However, unlike VIOs, LIOs can avoid estimating
extra landmark states that introduce significant linearization
errors. Thus, filters should theoretically achieve comparable
accuracy to optimization-based methods for LIO.

2) Filter-Based Methods: Filters typically exhibit lower ac-
curacy compared with graph optimization, primarily due to lin-
earization errors. The iterated error-state Kalman filter (IESKF)
mitigates linearization errors by iterative updates, ensuring both
accuracy and efficiency [19], which has made it widely adopted
in numerous studies. FAST-LIO [20] extracts edge and planar
features and employs the IESKF to tightly integrate IMU and
LiDAR measurements, achieving greater efficiency compared
with optimization-based LIO-SAM [11]. To address the grow-
ing computation issue of FAST-LIO, FAST-LIO2 [18] directly
registers raw LiDAR points to a global map represented by
an incremental k–d tree and employs the IESKF for accurate
state estimation. The probabilistic adaptive voxel map proposed
in [21] consists of voxels that each represent a plane feature
and are integrated into the IESKF framework. VoxelMap++
[22] expands on the work in [21] by consolidating coplanar
features into larger planes, thereby reducing uncertainty in the
overall map and improving the state-estimation accuracy of the
IESKF. The IESKF-based LIOs discussed above rely on F2M
association (i.e., matching the current frame to the global map)
instead of F2F association for higher accuracy. The reason is that
the IESKF estimates only the current pose, and relying solely
on F2F association between two consecutive frames makes it
challenging to achieve high accuracy. However, F2M association
may produce incorrect absolute measurements, hindering the
seamless integration of absolute positioning sensors [12], [23].

MSCKF can also achieve high accuracy by simultaneously
estimating multiple poses within a sliding window, without the
need for iterations. A key advantage of MSCKF over IESKF is
its ability to construct multistate relative constraints, enabling it
to maintain high accuracy with F2F association. LIC fusion [7]
efficiently fuses IMU measurements and LiDAR features (planes
and edges) within the MSCKF framework. Extracted features
from the current LiDAR frame are tracked back to the previous
frame to construct the F2F measurement model. However, LIC
fusion constructs the F2F associations only between two LiDAR
frames, without fully leveraging the multistate characteristics
of MSCKF. In contrast, LIC-fusion 2.0 [8] adopts a normal-
based method to associate plane features and stores them as
SLAM plane landmarks. The plane landmarks can be associated
with multiple frames, implementing multistate F2F constraints
and, thus, achieving higher accuracy. In addition, LIC-fusion 2.0
proposes a plane-feature tracking method to enhance efficiency.

The multistate relative constraints in BA-LINS [17] and
LIC-fusion 2.0 [8] resemble the BA in visual multiple-view

geometry [24], which has been proven to be more accurate
in LiDAR mapping by BALM [25]. However, BALM is de-
signed for LiDAR mapping rather than odometry. BA-LINS is
an optimization-based method suffering from poor efficiency.
Although LIC-fusion 2.0 utilizes the MSCKF framework, its
reliance on explicit plane-feature extraction increases computa-
tional costs notably and leads to poor accuracy in unstructured
environments. As a result of explicit plane-feature extraction,
LIC-fusion 2.0 augments plane landmarks with a long track
length into the state vector, resulting in lower state-estimation ef-
ficiency. Moreover, the efficient plane-feature tracking proposed
in LIC-fusion 2.0 is designed specifically for spinning LiDARs
and is not applicable to the increasingly popular solid-state
LiDARs. Hence, the high-efficiency potential of the MSCKF
remains underutilized in the existing LIOs, and the LiDAR
measurement model should be further studied for the accurate
MSCKF state estimation.

B. Main Contributions

Motivated by the above issues, this study proposes a tightly
coupled MSCKF-based LIO with LiDAR same-plane cluster
(LSPC) tracking, named MSC-LIO. Here, the proposed LSPC
tracking builds on the point-to-plane iterative closest point (ICP)
[26]. Each LiDAR point is evaluated with the point-to-plane
ICP to determine whether it qualifies as a plane point. When a
point is identified as a plane point, it is paired with its nearest
neighbor, and they are referred to as a cluster of points on
the same plane. The process of associating LSPCs between
two consecutive LiDAR frames is defined as LSPC tracking,
which is proposed to improve data-association efficiency. To
fully exploit the characteristics of MSCKF, same-plane clusters
derived from LSPC tracking, which establish relative constraints
across multiple LiDAR frames, are employed to construct the
LSPC measurement model. The main contributions of this study
are as follows.

1) We present an MSCKF-based LIO that tightly integrates
IMU and LSPC measurements, with online calibration of
LiDAR-IMU spatiotemporal parameters.

2) We propose an efficient LSPC tracking method that
avoids explicit plane-feature extraction and is compatible
with both spinning and solid-state LiDARs. By track-
ing LSPCs frame by frame within a sliding window,
this method significantly enhances data-association ef-
ficiency.

3) By leveraging LSPC tracking, the velocity of plane points
can be approximately calculated. Using the point veloc-
ity, we propose a novel and straightforward approach to
estimate the LiDAR-IMU time delay (LITD).

4) Comprehensive experiments are conducted on both public
datasets and real-world environments to evaluate the per-
formance of the proposed MSC-LIO. Results demonstrate
that our method outperforms the state-of-the-art (SOTA)
methods in both accuracy and efficiency.

II. SYSTEM OVERVIEW

The system overview of the proposed MSC-LIO is shown in
Fig. 1. We adopt an INS-centric processing pipeline. The initial
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Fig. 1. System overview of the proposed MSC-LIO.

position and heading angle of the IMU are initialized to zero,
while the roll and pitch angles are determined by the accelerom-
eter measurements and gravity acceleration. If a zero-velocity
state is detected during initialization, we can also obtain an
initial gyroscope bias using the mean gyroscope measurements.
Once the system is initialized and the IMU input is received,
the INS mechanization is performed, and the state vector and
its covariance are forward propagated. In the meantime, the INS
pose is stored for further point-cloud preprocessing. When a
LiDAR frame is received, the point-cloud distortion is corrected
with the high-frequency INS pose. Besides, the INS prior pose is
also employed for keyframe selection. The keyframe strategy is
employed to balance accuracy and efficiency [11]. If the relative
motion or time interval between the current frame and the
previous keyframe exceeds the predefined threshold, the current
frame is considered a keyframe [12]. The keyframe-selection
thresholds are detailed in Section V-A.

When a keyframe is selected, all nonkeyframes between the
previous keyframe and the current keyframe are projected and
merged into the current keyframe to construct the keyframe
point-cloud map. Subsequently, the LSPC tracking is performed
between the historical keyframe point-cloud maps and the cur-
rent. More specifically, the LSPC candidates in the historical
keyframe point-cloud maps are utilized to track the LSPCs
in the current keyframe point-cloud map. The LSPC tracking
is conducted by searching for the nearest neighboring points
instead of explicit plane-feature extraction. The tracked LSPCs
are employed to construct the F2F LSPC measurement model.
Then, the LSPC measurements are utilized to update the IMU
state, the keyframe states, and the LiDAR-IMU spatiotemporal
parameters within the MSCKF framework. Finally, the current
keyframe pose state is augmented into the MSCKF state vector.
The marginalization is conducted when the sliding window
exceeds its maximum length.

III. MSCKF-BASED LIDAR-INERTIAL ESTIMATOR

A. State Vector

The error-state vector of the MSCKF includes the IMU state
δxI , the LiDAR-IMU extrinsic parameter state δxb

l , the LITD
state δtd, and the keyframe states δxk(k = 0, 1, . . . , N − 1),
where N is the length of the sliding window. The error state δx
can be written as follows:

δx = [δxI , δx
b
l , δtd, δx0, δx1, . . . , δxN−1]

T
(1)

where δxI , δxb
l , and δxi are expressed as follows:

δxI = [δθw
bN

, δpw
bN

, δvw, δbg, δba] (2)

δxb
l = [δθb

l , δp
b
l ] (3)

δxk = [δθw
bk
, δpw

bk
]. (4)

Here, w, b, and l represent the world frame, the IMU frame,
and the LiDAR frame, respectively; δθw

bN
, δpw

bN
, and δvw de-

note the errors of current IMU attitude, position, and velocity,
respectively; δbg and δba denote the bias errors of the gyroscope
and accelerometer, respectively; δθb

l and δpb
l denote the errors

of LiDAR-IMU extrinsic parameters; δθw
bk

and δpw
bk

denote the
IMU pose errors at the time of keyframe k, which is denoted as
KFk. The relationship among the true state x, estimated state
x̂, and error state δx is

x = x̂� δx. (5)

For the attitude error δθ, the operator � is given by

R = R̂Exp(δθ) ≈ R̂(I+ (δθ)×) (6)

where R and R̂ denote the true and estimated rotation matrix,
respectively; Exp is the exponential map [27]; (·)× denotes the
skew-symmetric matrix of the vector belonging to R3 [28]. For
other states, the operator � is equivalent to Euclidean addition,
i.e., a = â+ δa. The LITD td is employed to adjust the LiDAR
time tLiDAR for synchronization with IMU time tIMU

tIMU = tLiDAR + td. (7)

When receiving the IMU measurement, INS mechanization
is conducted to update the IMU pose and velocity, and the
standard error-state Kalman filter (ESKF) prediction formula
[29] is employed for the forward propagation of the MSCKF
error state and its covariance.

B. LSPC Measurement Model

The tracked LSPCs are used to construct the LSPC measure-
ment model, which is formulated by minimizing the thickness
of the plane constructed by the points within each LSPC. Each
LSPC contains a set of same-plane points, and each point comes
from a different keyframe. The LSPC with index j is denoted as
Sj = {pl

k ∈ R3|k ∈ Nj}, wherepl
k represents the point belong-

ing to KFk and Nj is the index set of the associated keyframes.
All the same-plane points are expressed in the LiDAR frame.

Considering an LSPC Sj , each point is first projected onto the
world frame with the LiDAR-IMU extrinsic parameters and the
IMU pose as

pw
k = R̂w

bk
(R̂b

lp
l
k + p̂b

l ) + p̂w
bk
. (8)

Then, the plane fitting is conducted with the projected points
by solving an overdetermined linear equation [30]. The normal-
ized normal vector of the plane is denoted as n, and d is the
distance that satisfies the following equation:

nTpw + d = 0 (9)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University. Downloaded on June 16,2025 at 08:14:31 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ASME TRANSACTIONS ON MECHATRONICS

where pw is a point on the plane in the w frame. The LSPC
measurement is the mean of the sum of squares of the point-to-
plane distances

zj =
1
nj

∑
k

(nTpw
k + d)

2
(10)

where nj is the number of same-plane points in Sj .

C. LiDAR Measurement Update

In the proposed method, only the LSPCs containing the point
from the current keyframe are used for the update. The points
in Sj belong to the same plane, and thus, the point-to-plane
distances are zeros in the absence of errors. Hence, the residual
rj can be written as

rj = 0 − zj ≈ Hj
xδx+ nj

r (11)

where Hj
x is the Jacobian w.r.t. to δx, and nj

r ∈ N(0,Σj
Γ)

is the noise. The adaptive covariance Σj
Γ will be detailed in

Section IV-A.
The residual rj is the function of the poses and the LiDAR-

IMU extrinsic parameters. Therefore, we can derive the cor-
responding analytical Jacobians using the error-perturbation
method [31]. The Jacobians w.r.t. the keyframe states not as-
sociated with the measurement zj are zeros, and the Jacobians
w.r.t. the pose errors {δθw

bk
, δpw

bk
} can be formulated as

∂rj

∂δθw
bk

= −Jj
kR̂

w
bk
(R̂b

lp
l
k + p̂b

l )× (12)

∂rj

∂δpw
bk

= Jj
k (13)

where

Jj
k =

2
nj

(nTpw
k + d)nT . (14)

Similarly, the Jacobians w.r.t. the LiDAR-IMU extrinsic errors
{δθb

l , δp
b
l} can be formulated as

∂rj

∂δθb
l

= −
∑
k

Jj
kR̂

w
bk
R̂b

l (pk)× (15)

∂rj

∂δpb
l

=
∑
k

Jj
kR̂

w
bk
. (16)

The time delay td is not considered in this section and will
be discussed in Section IV-B. The standard chi-square test is
utilized to remove outliers [12], and advanced methods for
detecting outliers introduced by dynamic objects can also be
considered [32]. With the analytical Jacobians, the MSCKF error
state and covariance can be updated with the standard ESKF
update formula [29].

D. State Augmentation and Marginalization

The proposed MSC-LIO does not explicitly extract plane
features, eliminating the need for null-space projection. Thus,
the adopted MSCKF method only requires additional state
augmentation and marginalization compared with the standard

Fig. 2. Illustration of the F2F same-plane cluster tracking. Each yel-
low point is the projection of the red point from the previous adjacent
keyframe point-cloud map.

Kalman filter with fixed states. When receiving a new LiDAR
keyframe, the IMU state is corrected, and then the IMU pose state
is augmented into the state vector. Meanwhile, the covariance
Pn×n is augmented. The Jacobian of the augmented pose state
w.r.t. the state vector is J6×n. The augmented covariance can be
written as

P(n+6)×(n+6)=

[
In×n

J6×n

]
Pn×n

[
In×n

J6×n

]T
=

[
P PJT

JPT JPJT

]
.

(17)
The state and covariance of the oldest keyframe will be

directly deleted when the sliding window exceeds its maximum
length, that is, the marginalization [2].

IV. LSPC TRACKING

The proposed LSPC tracking is based on the point-to-plane
ICP [26], a direct point-cloud preprocessing method. Thus, the
LSPC tracking avoids explicit feature extraction and applies to
unstructured environments. The same-plane clusters are tracked
between two consecutive frames instead of being searched
across multiple frames [17], thereby improving data-association
efficiency. Besides, based on the LSPC tracking, we propose a
novel and straightforward approach to estimate the LITD.

A. F2F Same-Plane Cluster Tracking Method

The proposed LSPC tracking is performed within the
keyframe point-cloud maps, which are downsampled by a voxel-
grid filter (with a default voxel size of 0.5 m). Since the plane
features are not explicitly extracted, all points in the point-cloud
maps are candidates for same-plane points. During the initial-
ization stage, each point in the first keyframe point-cloud map
is grouped into an LSPC, and LSPC tracking is subsequently
performed on each LSPC. The specific procedure for the LSPC
tracking is illustrated in Fig. 2. For each LSPC Sj , the newest
point (the red points in Fig. 2) is projected onto the current
keyframe point-cloud map (the yellow points in Fig. 2), and
then five neighboring points (the red and blue points in Fig. 2)
{pm|m = 1, 2, . . . , 5} are searched. The five points are used to
fit a plane (nl, dl). If each point-to-plane distance is less than
the set threshold (0.1 m), the tracking is considered valid. In this
case, the nearest neighboring point (the red points in Fig. 2) is
added to Sj for tracking in subsequent keyframes, and the plane
thickness [17] is calculated as

Γ =
1
5

5∑
m=1

(nT
l pm + dl)

2
. (18)
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(a)

(b)

(c)

Fig. 3. Tracked same-plane clusters. Different clusters are repre-
sented by different colors. Those clusters associated with tree trunks
and other pole-like objects are marked with Gi to demonstrate the
effectiveness of the tracking. Each LSPC forms a small plane and the
LSPC measurement model can be applied to the same-plane points
within the LSPC to minimize the thickness of the plane constructed by
these same-plane points. For clarity, the clusters associated with the
right wall are not shown. (a) Point-cloud map. (b) Same-plane clusters
(left). (c) Same-plane clusters (right).

For Sj , the covariance of the plane thickness Σj
Γ and the

adaptive standard deviation (STD) of the point-to-plane distance
σj [17] can be obtained by

Σj
Γ =

1
nj

∑
k

(Γk
2)I, σj =

4

√
0.5Σj

Γ. (19)

To ensure the validity of the LSPC measurements, only LSPCs
containing at least five points and associated with the current
keyframe are considered as candidates for valid measurements.
The points in Sj are projected onto the w frame to fit a plane,
and the point-to-plane distances are calculated. If all the point-
to-plane distances are less than 3σj , Sj is considered a valid
measurement.

Fig. 4. Overview of the same-plane cluster tracking method.

Fig. 3 shows the results of the proposed tracking method, and
each LSPC is represented by a distinct color. There are many
tree trunks and other pole-like objects on both sides of the road,
marked withGi in the point-cloud map and tracking schematics.
Most of the same-plane clusters associated with tree trunks and
pole-like objects in Fig. 3 are successfully tracked, indicating
the effectiveness of the LSPC tracking. Notably, only the LSPCs
associated with all keyframes in the sliding window are shown
in Fig. 3. For clarity, the LSPCs associated with the right wall
are not shown in Fig. 3(c).

To ensure the stability of MSC-LIO, we supplement the
LSPCs with new points. The current keyframe point-cloud map
is voxelized with a much larger voxel size than 0.5 m (the default
is 2.5 m), and only the point closest to each voxel center is
retained to ensure uniform spatial distribution of the supplemen-
tary points. The retained points are employed to construct new
LSPCs to ensure the robustness of the F2F association. Besides,
the clusters not associated with the newest five keyframes will
be removed. An overview of the tracking method is provided in
Fig. 4.

B. LITD Estimation Based on Same-Plane Point Velocity

An unknown time delay typically exists between the times-
tamps of the IMU and the LiDAR. If not estimated and com-
pensated for, the LITD will introduce unmodeled errors into
the state estimation, thereby reducing its accuracy. Traditional
LITD estimation algorithms require the angular rate and velocity
to compensate for each keyframe pose [33]. Hence, we propose
a simpler and more direct LITD estimation algorithm based on
the LSPC tracking. The proposed algorithm utilizes the point
velocity exclusively to compensate for the positions of LiDAR
same-plane points.

The velocity of a plane point can be calculated by the relative
motion between two keyframes. The LiDAR frames of the two
consecutive keyframes are denoted as L1 and L2, and a plane
point P is tracked between the two keyframes, as depicted in
Fig. 5(a). The coordinates of P in L1 and L2 are pL1 and pL2 ,
respectively, and the velocity of P can be obtained by

vp = vL1
p = vL2

p =
pL2 − pL1

Δt
(20)

where Δt is the time interval. However, the points tracked in
the two keyframes may not be the same due to the nonrepetitive
scanning pattern and point-cloud downsampling. Hence, when
conducting LSPC tracking, the distances between same-plane
points are constrained within a threshold (0.1 m) to ensure the
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(a) (b)

Fig. 5. Point-velocity calculation. (a) Same point. (b) Downsampled
points.

accuracy of the point velocity calculated by (20), as shown in
Fig. 5(b).

For Sj = {pl
k ∈ R3|k ∈ Nj}, pl

k belongs to the keyframe
KFk, and its velocity is vpk

. The estimated LITD of KFk is
t̂dk

, and the estimated KFk pose {R̂w
bk
, p̂w

bk
} is the IMU pose at

tIMUk
= tLiDARk

+ t̂dk
. Specifically, the estimated LITD of the

current keyframe KFN is denoted as t̂d = t̂dN
. The difference

between t̂dk
and t̂d is employed to compensate forpl

k as follows:

p̂l
k = pl

k − vpk
(t̂d − t̂dk

). (21)

Then, p̂l
k is employed to construct the LSPC measurement by

(8) and (10). The Jacobian w.r.t. the LITD error is

∂rj

∂δtd
= −

∑
k

Ĵj
kR̂

w
bk
R̂b

lvpk
. (22)

V. EXPERIMENTS AND RESULTS

A. Implementation and Datasets

We implement the proposed MSC-LIO in C++ and robot
operating system. We compare the proposed MSC-LIO with
other SOTA LIOs, including LIO-SAM (without loop closure)
[11], FAST-LIO2 [18], and FF-LINS [12]. LIO-SAM and FF-
LINS are optimization-based systems, while FAST-LIO2 is a
filter-based system. The LiDAR-IMU extrinsic parameters and
time delay are assumed unknown for all systems. The sliding
window size for MSC-LIO and FF-LINS is all set to 10 to ensure
a fair comparison. All systems are implemented on a desktop PC
(AMD R7-3700X).

The used public datasets are the MCD [34] and WHU-Helmet
[35] datasets. Six KTH sequences of the MCD dataset are
selected, with a total trajectory length of 6786 m. The KTH
sequences were collected using a handheld setup, which was
equipped with a spinning LiDAR, i.e., Ouster OS1, and a
MEMS IMU. The WHU-Helmet dataset was collected by a
helmet-based system, which was equipped with a solid-state
LiDAR, i.e., Livox AVIA, and a MEMS IMU. In the WHU-
Helmet dataset, four sequences collected by Livox AVIA are em-
ployed, with a total trajectory length of 3656 m. Both the MCD
and WHU-Helmet datasets provide high-precision reference
truth.

To further evaluate MSC-LIO in real-world scenarios, we also
conducted real-world experiments on a wheeled robot with a
maximum speed of 1.5 m/s, as depicted in Fig. 6. The sensors

Fig. 6. Robot used for real-world experiments.

Fig. 7. Four scenes of the real-world experiments. Different colors
denote different sequences.

used include a solid-state LiDAR, i.e., Livox Mid-70, and a
MEMS IMU ADIS16465. The sensors are well synchronized by
using the pulse signal from the GNSS receiver. The integrated
navigation solution of a navigation-grade [31] IMU Leador-A15
and high-precision GNSS real-time kinematic (RTK) serves as
the ground truth, with position and attitude accuracy of 0.02 m
and 0.01°, respectively [1]. Eight sequences with a total length
of 15 248 m were collected by the wheeled robot and denoted
as the RobNav dataset. The eight experimental scenes include
various structured and unstructured environments. In addition,
dynamic objects, such as pedestrians, bicycles, and vehicles,
make it challenging to achieve robust positioning. Four se-
quences among them are shown in Fig. 7. The information on the
public datasets and the real-world Robnav dataset is summarized
in Table I. The keyframe-selection thresholds primarily depend
on the dead-reckoning performance of the IMU and the carrier
dynamics to ensure the accurate LiDAR F2F data association.
For instance, the translation thresholds differ between the WHU-
Helmet dataset and the RobNav dataset, with the former set to
0.3 m and the latter to 0.4 m.
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Fig. 8. Results on the WHU-Helmet residence sequence. (a) Whole trajectory. (b) Endpoint. (c) Height (z-axis) change.

TABLE I
DATASETS’ DESCRIPTIONS

TABLE II
ATES ON THE MCD DATASET

TABLE III
ATES ON THE WHU-HELMET DATASET

B. Evaluation of the Accuracy

1) Public MCD Dataset: The absolute translation errors
(ATEs) are calculated using evo [36], as presented in Table II.
LIO-SAM has a significant error on the kth_night_01 sequence,
mainly due to its inability to extract effective features in small
indoor scenes. Due to the presence of many loop closures in
the MCD dataset, FAST-LIO2 based on F2M association can
establish associations with the self-built map, resulting in bet-
ter accuracy compared with FF-LINS based on F2F associa-
tion. MSC-LIO constructs F2F multistate constraints and, thus,
achieves higher accuracy compared with FF-LINS. Besides,

TABLE IV
ARES AND ATES ON THE ROBNAV DATASET

MSC-LIO achieves the best accuracy on three sequences and the
smallest root-mean-square (RMS) error on all six sequences.

2) Public WHU-Helmet Dataset: The ATEs are calculated
on the WHU-Helmet dataset, as shown in Table III. LIO-SAM
nearly fails in the indoor scene of the subway sequence, result-
ing in a great ATE. Benefiting from the multistate constraints
of LSPC measurements, the proposed MSC-LIO achieves the
highest accuracy in the street and subway sequences. Moreover,
the ATE RMS of the four sequences indicates that MSC-LIO
outperforms other SOTA systems in terms of accuracy.

The results of the residence sequence are shown in Fig. 8.
In Fig. 8(a), the whole trajectory of LIO-SAM exhibits a
significant drift compared with the ground truth trajectory, while
the trajectories of other systems are well aligned with the truth.
Fig. 8(b) and (c) shows that, near the endpoint, FF-LINS and
MSC-LIO are closer to the ground truth than FAST-LIO2,
which benefits from the consistent F2F association. MSC-LIO
exhibits a smaller error than FF-LINS, especially in the z-axis,
as MSC-LIO constructs the accurate multistate constraints.

3) Real-World Experiments: The absolute rotation errors
(AREs) and ATEs are calculated, as presented in Table IV.
LIO-SAM fails to run on the real-world experiments, i.e., the
RobNav dataset, because the used Livox Mid-70 point clouds
are sparse and difficult to extract features effectively. In contrast,
other systems do not explicitly extract features, and thus, they
can run successfully. The AREs of FAST-LIO2 are mostly larger
than 3° because they cannot estimate the LiDAR-IMU extrinsic
parameters. In contrast, FF-LINS and MSC-LIO can estimate
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Fig. 9. Results on the RobNav luojia_square sequence. (a) Whole trajectory. (b) Height (z-axis) change. (c) Attitude error.

TABLE V
AVERAGE RUNNING TIME PER KEYFRAME AND THE TOTAL TIME OF DATA ASSOCIATION AND STATE ESTIMATION

the extrinsic parameters, resulting in much smaller AREs. MSC-
LIO achieves the highest accuracy in most sequences, and the
RMSs of ATEs and AREs are both at optimal levels.

The results of the luojia_square sequence are shown in Fig. 9.
Fig. 9(a) and (b) shows that the trajectory of MSC-LIO is better
aligned with the ground truth, while FF-LINS and FAST-LIO2
exhibit significant drifts in the horizontal and elevation direc-
tions, respectively. The attitude error is shown in Fig. 9(c).
FAST-LIO2 has large errors in the roll, pitch, and yaw an-
gles due to the F2M association that may introduce incorrect
observability. With consistent F2F association, FF-LINS and
MSC-LIO exhibit high accuracy in the observable roll and pitch
angles, although the yaw angle may diverge for unobservability.
MSC-LIO exhibits higher accuracy in the yaw angle with a
maximum error of 0.72° because of the multistate constraints
of LSPC measurements.

C. Evaluation of the Efficiency

We compared the efficiency of MSC-LIO with FAST-LIO2,
FF-LINS, and MSC-LIO w/o tracking on the RobNav dataset.
MSC-LIO w/o tracking does not use the proposed LSPC track-
ing; instead, its data association works as follows. The current
keyframe point clouds are sampled and voxel downsampled.
Then, the obtained points are projected onto each historical
keyframe point-cloud map within the sliding window. Finally,
planes are fitted by searching for neighboring points, and the
nearest neighboring points from all keyframes are employed to
construct the LSPC measurements. For more details, refer to

BA-LINS [17]. The running time of data association and state
estimation is recorded, as shown in Table V.

1) Efficiency of Data Association: Data association includes
F2F or F2M feature association. For MSC-LIO, data association
consists of the preprocessing of LSPCs (removal and supplemen-
tation) and LSPC tracking. FAST-LIO2 and MSC-LIO spend
less time in data association according to Table V. The reason
is that FF-LINS and MSC-LIO w/o tracking perform nearest
neighboring point search and plane fitting with all historical
keyframes within the sliding window. In contrast, FAST-LIO2
only matches the current frame with the map, and MSC-LIO
only matches the latest points in the LSPCs with the current
keyframe. Although the preprocessing of LSPCs consumes extra
time, the data-association efficiency of MSC-LIO is still signif-
icantly improved, with the time spent approximately one-third
of MSC-LIO w/o tracking.

In fact, the data-association time of MSC-LIO is shorter
than FAST-LIO2 for the whole sequences, as MSC-LIO only
processes the LiDAR frames at each keyframe moment, while
FAST-LIO2 performs F2M association at each LiDAR frame
moment. Due to the keyframe-selection strategy, the average
keyframe interval is 3–4 times of LiDAR frames on the RobNav
dataset. This is why the running time for single data association
and state estimation of MSC-LIO is longer than FAST-LIO2,
but the total running time of MSC-LIO is shorter in Table V.

2) Efficiency of State Estimation: State estimation includes
the prediction and update or factor graph optimization. For
MSCKF, it also includes extra state augmentation and marginal-
ization. As shown in Table V, the state-estimation time of
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TABLE VI
IMPACT OF SAME-PLANE CLUSTER TRACKING ON THE NUMBER OF PLANES,

ARES, AND ATES

the optimization-based FF-LINS is much longer than other
filter-based methods. The state-estimation time of MSC-LIO
w/o tracking and MSC-LIO is similar, as the number of plane
features is close. The state-estimation efficiency of FAST-LIO2
is higher than MSCKF-based methods, as its state vector dimen-
sion is lower. In contrast, the state vectors of MSCKF-based
methods contain the keyframe states within the sliding win-
dow, and extra state augmentation and marginalization are also
required.

D. Ablation Experiments

1) Impact of the Same-Plane Cluster Tracking: In Sec-
tion V-C, it has been demonstrated that the LSPC tracking
improves the efficiency of data association. In this part, we will
further evaluate its impact on accuracy. The statistical results of
the number of planes, AREs, and ATEs on the RobNav dataset
are shown in Table VI. The number of planes refers to the
average number of LSPCs selected as valid measurements at
each keyframe-selection moment. The proposed LSPC tracking
method improves the accuracy, with an average reduction of
17.7% in AREs and 31.8% in ATEs, while the average number of
planes remains relatively unchanged. The improvement in accu-
racy stems not from the change in the number of planes but from
the more uniform distribution of the tracked same-plane points.

2) Impact of the Proposed LITD Estimation Method: In this
section, the impact of the LITD estimation method on accuracy
is evaluated. The traditional LITD estimation methods use the
LITD to compensate for keyframe poses, as detailed in [37].
MSC-LIO with the traditional LITD estimation method is de-
noted as MSC-LIO-PTD, and MSC-LIO without LITD estima-
tion is denoted as MSC-LIO w/o TD. The MCD dataset has a
relatively larger LITD, while the LITDs in the WHU-Helmet and
RobNav datasets are less than 2 ms. Hence, the MCD dataset is
employed to evaluate the effect of LITD estimation methods.

Fig. 10 depicts the estimated LITDs on the kth_day_06 and
kth_night_01 sequence. The estimated LITDs are close and
have converged, verifying the feasibility of the proposed LITD
estimation method. The ATEs with different LITD estimation
methods are shown in Table VII. The ATEs increase greatly
when the large LITD is not estimated. This is mainly because
the LITD causes inaccuracy in the IMU poses used for point-
cloud distortion correction, resulting in low accuracy of LSPC

Fig. 10. LITDs of MSC-LIO-PTD and MSC-LIO. MSC-LIO-PTD uses
the time delay to compensate for the pose of each keyframe. (a)
kth_day_06. (b) kth_night_01.

TABLE VII
IMPACT OF THE TIME-DELAY ESTIMATION METHODS ON ATES

measurements. The ATEs of MSC-LIO-PTD and MSC-LIO
are similar for all sequences, indicating that the accuracy of
the proposed point-velocity-based LITD estimation method is
comparable with the traditional method. However, the proposed
method is much simpler and more direct, as it employs only
point velocity to compensate for the LiDAR points rather than
using both the angular rate and velocity to compensate for all
keyframe poses within the sliding window.

E. Real-Time Performance

To further test the real-time performance of MSC-LIO, we
also implemented the MSC-LIO on an edge device NVIDIA
jetson AGX Xavier, as shown in Fig. 6. The AGX Xavier features
an 8-core ARM v8.2, 64-bit CPU with 8 MB L2 and 4 MB
L3 cache, along with 16 GB of 256-bit LPDDR4x memory
running at 2133 MHz, providing a bandwidth of 137 GB/s.
We collected two extra sequences in real-world environments
by the wheeled robot, as shown in Fig. 6. One is the infor-
mation_campus sequence (2012 s and 2565 m), and the other
is the academic_building sequence (1152 s and 1457 m), as
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Fig. 11. Testing scenes of the real-time experiment. (a) Informa-
tion_campus. (b) Academic_building.

TABLE VIII
REAL-TIME PERFORMANCE OF MSC-LIO

depicted in Fig. 11. The ground truth is obtained from the
integrated navigation solution of Leador-A15 and GNSS-RTK
as mentioned above.

We run the proposed MSC-LIO on the edge device NVIDIA
Jetson AGX Xavier in real-time mode. The estimated trajectories
are well aligned with the ground truth, as shown in Fig. 12.
The real-time performance including accuracy and efficiency
is shown in Table VIII. The small AREs and ATEs indicate
that the proposed MSC-LIO exhibits high accuracy when run-
ning in real-time mode on the AGX Xavier. The total running
times of MSC-LIO are less than one-fifth of the total dura-
tion of the sequences. Besides, the average processing time
per LiDAR frame is calculated by dividing the total running
time by the total number of LiDAR frames (the LiDAR frame
rate is 10 Hz in the real-time experiment). On the edge de-
vice AGX Xavier, the average processing times per LiDAR
frame of the information_campus and academic_building are
0.02 s and 0.017 s, respectively, exhibiting superior efficiency.
In summary, the proposed MSC-LIO demonstrates excellent
real-time performance on the edge device NVIDIA Jetson AGX
Xavier.

Fig. 12. Estimated trajectories on the real-time experiments. (a) Infor-
mation_campus. (b) Academic_building.

VI. CONCLUSION

This article proposes a tightly coupled LIO within the MSCKF
framework. An F2F same-plane cluster tracking method is de-
signed to improve data-association efficiency, and the same-
plane cluster measurement model constructs a multistate
constraint. In addition, we propose a simpler and more direct
point-velocity-based LITD estimation method based on the
same-plane cluster tracking. We conducted extensive experi-
ments on both public datasets and real-world environments.
The experimental results demonstrate that the proposed MSC-
LIO outperforms SOTA systems in terms of accuracy and effi-
ciency. Future work involves integrating the absolute positioning
sources, such as the GNSS and the UWB, to achieve drift-free
localization in large-scale outdoor and indoor environments.
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