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A B S T R A C T

Wrist-worn devices such as smartwatches have become increasingly popular consumer electronics in recent 
years. For smartwatches, positioning is considered a fundamental feature, and global navigation satellite system 
(GNSS) positioning is the primary solution employed for this purpose. However, GNSS positioning performance is 
inevitably affected by signal occlusion. In addition to traditional obstructions such as high-rise buildings, the 
human body itself could be a new occlusion source for the embedded GNSS antenna, and this phenomenon is 
termed GNSS body shadowing. This paper first illustrates and analyzes the impacts of GNSS body shadowing on 
GNSS pseudorange observations. Then, a wrist-worn and tightly-coupled GNSS/inertial navigation system (INS) 
integrated system (i.e., WGINS) is proposed, which takes GNSS body shadowing into account. Several tests have 
been conducted in an open-sky environment with the GNSS antenna worn on the wrist. Test results show that 
significant ranging errors in pseudorange observations can be determined when the satellites are shadowed by 
human body. The proposed WGINS utilizes high-frequency position and attitude information output from INS- 
based pedestrian dead reckoning (PDR) to identify obstructed satellites, which effectively mitigates the im
pacts of GNSS body shadowing on positioning performance. Test results demonstrate that the proposed WGINS 
reduces the horizontal position error from 2.42 m (root-mean-square, RMS) to 1.71 m.

1. Introduction

The emergence of pedestrian positioning technology has signifi
cantly enhanced the convenience of daily life. With the rapid develop
ment of wearable technologies, wearable devices have become an ideal 
option when considering location-based services (LBS) [1]. Among 
various products, wrist-worn devices such as smartwatches and wrist
bands have become increasingly popular consumer electronics in recent 
years. For smartwatches, major manufacturers now consider positioning 
as a core function [2], enabling applications such as outdoor sports 
tracking, map navigation, child or elderly safety, etc. Consequently, 
there is a clear demand for wrist-worn devices to provide continuous and 
reliable location services in different application scenarios.

For smart devices, the embedded global navigation satellite system 
(GNSS) chips are typically employed to provide the user’s location. As a 
basic method, various positioning methods have been developed. For 
the basis, standard point positioning (SPP) can provide a meter-level 
positioning accuracy [3]. By using reference station, such as 

differential GNSS (DGNSS) [4] and real-time kinematic positioning 
(RTK) [5], the positioning accuracy can be further improved. While in 
urban canyons, the positioning performance is mainly affected by 
multipath effects and non-line-of-sight (NLOS) receptions, and the 
relative positioning methods are not so efficient in this case; thus, three- 
dimensional city model [6] and pedestrian map [7] are used to mitigate 
the impacts of signal blockage and reflection. It should be noted that 
these investigations are conducted using smartphones, but the 
mentioned solutions can be adopted in wrist-worn devices to some 
extent. Nevertheless, an important issue overlooked in previous studies 
is that the GNSS signal could be obstructed by human body in wrist- 
worn scenarios. Researchers have verified that human body is a signif
icant propagation impairment for wireless systems operating in indoor 
environments [8], and a shadow region (i.e., body shadowing) will be 
generated when mobile devices proximate to human body [9]. Similarly, 
human body could naturally become a new occlusion source when GNSS 
antenna is mounted on the user’s wrist, and this phenomenon is termed 
as GNSS body shadowing in this paper.
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Additionally, in environments where GNSS signals are degraded or 
unavailable, inertial measurement unit (IMU) has been widely used for 
pedestrian positioning through a technique known as pedestrian dead 
reckoning (PDR) [10]. In 2011, wrist-worn accelerometer and GPS was 
first employed to estimate step length [11]. Then, [12] proposed a 
complete wrist-worn PDR system, which takes motion recognition into 
account. Subsequently, a special wrist-worn PDR system has been 
designed for those who use a front-wheeled walker [13]. Furthermore, 
researchers deeply analyzed the suitability of wrist-worn sensors for 
implementing PDR systems, and the authors are optimistic about the 
feasibility [1]. Other studies have focused on specific components of 
wrist-worn PDR, such as step detection [14], walking speed estimation 
[15], and step length estimation [16]. It can be found that only a few 
wrist-worn PDR algorithms have been proposed, and the unique char
acteristics of wrist-worn scenarios have not been fully considered.

In outdoor environments, it has been demonstrated that combining 
GNSS with IMU-based PDR can effectively improve the positioning ac
curacy in smartphone-based pedestrian navigation [17]. However, only 

limited research has explored this approach for wrist-worn devices. 
There are two key differences between wrist-worn devices and smart
phones that require special attention. On the one hand, since wrist-worn 
devices are worn in close contact with human body, the impacts of GNSS 
body shadowing should be considered, which has not been noticed in 
previous studies. On the other hand, the motion characteristics of wrist- 
worn devices differ from those of smartphones. In most cases, the wrist- 
worn device swings with the arm while the smartphone is held in the 
hand, which requires special consideration in the design of PDR 
algorithms.

In view of the above-mentioned issues, a wrist-worn GNSS/INS in
tegrated system (i.e., WGINS) for pedestrian positioning is proposed, 
which takes GNSS body shadowing into account. In this paper, the im
pacts of GNSS body shadowing on pseudorange observations are illus
trated and analyzed. Then, a strapdown INS-based PDR is specifically 
designed for wrist-worn sensors. Thereafter, according to the position 
and attitude information provided by PDR, the obstructed satellites can 
be detected. Finally, the detected satellites are down-weighted with 
corresponding weighting strategies, and the impacts of GNSS body 
shadowing can be mitigated. The contributions of our work can be 
summarized as follows: 

(1) According to the tests conducted in an open-sky environment, the 
impacts of GNSS body shadowing on pseudorange observations 
have been investigated quantitatively for wrist-worn devices.

(2) Aiming at wrist-worn scenarios, a specifically designed INS-based 
PDR algorithm is proposed, which combines with GNSS in a 
tightly-coupled mode and helps to mitigate the impacts of GNSS 
body shadowing.

The remainder of this paper is organized as follows. First, the impacts 
of GNSS body shadowing are illustrated and analyzed. Then, the pro
posed wrist-worn GNSS/INS integrated system is described in detail. 
Subsequently, the test results and analysis are presented. Finally, con
clusions and future works are summarized.

2. Illustration of GNSS body shadowing

To illustrate GNSS body shadowing, GNSS observations are collected 
in an open-sky environment. The effects are then described and analyzed 
through both static and kinematic tests. Finally, the shadow region has 
been determined, providing a basis for subsequent algorithm design.

2.1. Experimental description

All tests were conducted on a playground using a single-frequency 
GNSS antenna mounted on the participant’s left wrist (the top panel 
of Fig. 1). For comparison, an additional GNSS antenna was mounted on 
the helmet to ensure there is no signal occlusion. Additionally, a 
geodetic GNSS receiver and two INS-Probes (an integrated navigation 
module consisting of u-blox F9P and TDK ICM-20602) were employed 
for data collection.

In this section, both static and kinematic tests were conducted. In the 
static test, the participant remained stationary while holding the left 
wrist in three different positions: middle, front, and back, as illustrated 
in the top panel of Fig. 1. Each position was maintained for 10 min, and 
30 min of data collection was counted as one complete test. In the ki
nematic test, the participant walked along straight and square routes, 
with natural arm swing. In this case, 10 min of GNSS data were collected 
for each route.

2.2. Impacts analysis of GNSS body shadowing

For consumer applications, pseudorange is the most basic measure
ment in GNSS positioning algorithms. Therefore, the impacts of GNSS 
body shadowing on pseudorange observations are primarily focused on 

Fig. 1. Experimental setup (top panel) and kinematic test trajectories (bot
tom panel).
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in this paper. When the satellites are obstructed by the human body, 
ranging errors in pseudorange observations can be observed. To detect 
ranging errors from raw measurements, the double-differencing tech
nique is adopted, as most errors such as satellite and receiver clock- 
biases, atmospheric effects, and multipath effects can be eliminated 

[18]. The double-differenced (DD) pseudorange observation can be 
expressed as: 

Pij
rb = ρij

rb + εP (1) 

Fig. 2. Sky plot and DD residuals in helmet-mounted and wrist-mounted scenarios for GPS and BDS. Use satellites G12, G23, C08, and C19 as example; satellites G32 
and C16 are selected as reference satellites.

Fig. 3. Sky plot and DD residuals in wrist-mounted scenario of two kinematic tests.
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where P is the pseudorange observation; ρ is the geometric range from 
satellite to receiver; εP is the measurement noise and other unmodeled 
errors, such as residual atmospheric and multipath effects; the super
script and subscribe represent satellites and receivers, respectively. For 
DD calculation, the geodetic GNSS receiver shown in Fig. 1 is used as the 
base station, while the two INS-Probes equipped with identical antennas 
serve as the rover stations. Note that if receivers are connected to a 

common antenna through a signal splitter, ρij
rb is equal to zero, which is 

known as zero-baseline approach [19]. In the actual tests, however, the 
antennas of the base and rover stations are installed at different loca
tions. Since the positions of rover stations cannot be accurately 
measured in kinematic tests, and the body blockage significantly affects 
the pseudorange observations, the zero-baseline approach is still adop
ted here, that is, the errors of DD residuals caused by antenna position 
differences are ignored.

In the static test, the participant stands still facing east, meaning that 
the azimuth range within [90◦, 270◦] corresponds to a shadow region. 
The sky plot and DD residuals of satellites G12, G23, C08, and C19 in 
helmet-mounted and wrist-mounted scenarios are shown in Fig. 2. In the 
wrist-mounted scenario, significant ranging errors are observed for 
satellites G23 and C08, whereas these satellites perform normally when 
the antenna is mounted on the helmet. From the sky plot, it can be 
concluded that satellites G23 and C08 are obstructed by the human 
body, while satellites G12 and C19 are located in an open-sky area. It is 
indicated that GNSS body shadowing significantly affects pseudorange 
observations and cannot be ignored in wrist-worn scenarios. Further
more, no significant ranging errors are detected when the wrist is fixed 
in the front position. This is primarily because, at the front-most position 
(as shown in Fig. 1), the wrist is away from the torso, reducing signal 
occlusion caused by the body.

The kinematic test was conducted twice: once on the straight route 
and once on the square route. For each route, the DD residuals of four 
satellites in wrist-mounted scenario are illustrated in Fig. 3. It can be 
observed that ranging errors still appear when the participant is under 
normal walking conditions. When a satellite is not obstructed, the DD 

Fig. 4. C/N0 data for the four satellites shown in the left panel of Fig. 3.

Fig. 5. Distributions of the absolute DD residuals for u-blox F9P and M8U in different wrist positions. The results of u-blox F9P are shown in (a), (c), and (e); the 
results of u-blox M8U are shown in (b), (d), and (f). Each subgraph contains two panels, which denote east- (left) and west-facing (right) results, respectively.
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residuals remain close to zero and exhibit relatively continuous 
behavior. This is likely due to the filtering methods that have been 
applied to the output pseudorange observations. However, when a sat
ellite is obstructed, the DD residuals fluctuate significantly, disrupting 
their continuity. Additionally, since the participant walked back and 
forth along the predefined route during data collection, the DD residuals 
exhibit regular patterns. Taking the straight trajectory as an example, a 
round-trip takes approximately two minutes, and the satellites switch 
between unobstructed and obstructed states. In total, five round-trips 
are completed during the test, resulting in each of the four satellites 
being obstructed five times. This aligns with the circled portions in Fig. 3
(left panel), demonstrating a strong correlation between signal occlusion 
and ranging error. However, one issue is that the magnitude of ranging 
errors varies from a few meters to tens of meters, indicating that the 
shadowing effect on pseudorange observations is difficult to quantify. 
Therefore, in the subsequent algorithm design, only weight adjustment 
is applied for the obstructed satellites.

For weight adjustment, it is necessary to find an indicator that can 
identify the pseudorange quality. Fig. 4 presents the carrier-to-noise 
density ratio (C/N0) data for the four satellites shown in the left panel 
of Fig. 3. Without signal occlusion, the C/N0 values range from 
approximately 40 to 50 dB-Hz in open-sky environment. However, when 
the satellite is obstructed by human body, a significant decrease 
(approximately 10–20 dB-Hz) in C/N0 values can be observed. It is 
evident that periods of DD residual fluctuations align with times when 
C/N0 values decrease. Nevertheless, in terms of magnitude, there is no 
clear correlation between the amplitude of DD residuals and the C/N0 
values. For instance, in the case of satellite G32, the C/N0 value 
consistently drops to a similar level each time it is obstructed; but the 
corresponding DD residuals range from a few meters to tens of meters. 
These test results suggest that the impacts of GNSS body shadowing on 
pseudorange observations is complex, which can be influenced by fac
tors such as wrist’s swing position and even clothing material. To 
accurately model the shadowing effects, more detailed studies are 
required in future work. However, based on the results demonstrated in 
Fig. 3 and Fig. 4, one conclusion is clear: signal blockage leads to a 
decrease in C/N0, which is consistent with findings in existing literature. 
Therefore, once a blocked satellite is detected, C/N0-dependent 
weighting strategies can be applied to mitigate the impacts of GNSS 
body shadowing on positioning performance.

2.3. Determination of shadow region

In indoor environments, the propagation conditions of signals are 
divided into three categories according to azimuth angles [20], namely 
line-of-sight (LOS), quasi-LOS (QLOS), and non-LOS (NLOS). Similarly, 
the shadow region caused by human body can also be roughly deter
mined. To identify the shadow region, the absolute DD residuals of 
pseudorange observations are plotted against azimuth and elevation 
angles. Specifically, the area with larger residuals is considered to be a 
shadow region.

However, it is hard work for the participant to perform a long period 
of data collection (e.g., several hours). Therefore, the static test 
mentioned earlier (as shown in Fig. 1) is conducted three times in one 
day, i.e., in the morning, noon, and evening; thus, a richer satellite 
distribution can be obtained. To assess potential on-device differences, 
this test utilized two consumer-grade GNSS receivers (i.e., u-blox F9P 
and M8U) for data collection. For each device, the static tests are con
ducted for two days: the first day facing east and the second day facing 
west. Corresponding results are shown in Fig. 5. In order to exclude the 
environmental impacts, the satellites with elevation angles lower than 
30◦ are discarded in all the tests. It can be seen that the east- and west- 
facing results of the two devices are basically symmetrical. In addition, it 
can be found that different shadow regions will be generated when the 
wrist swings to different positions (the shadow region in each subgraph 
is indicated by red lines). For instance, it makes sense that the minimal 

impacts can be observed when the wrist is positioned at the forefront (i. 
e., Fig. 5c and Fig. 5d), which is consistent with the results shown in 
Fig. 2.

According to the test results shown in Fig. 5, the shadow region can 
be roughly determined. For example, when the participant faces east and 
the GNSS antenna attached on left wrist, the azimuth ranges of [150◦, 
300◦] and [120◦, 240◦] are regarded as shadow regions for Fig. 5b and 
Fig. 5f, respectively. By taking an intersection of these shadow regions, 
the final result can be roughly determined, as shown in Fig. 6. Obvi
ously, not all the satellites in the determined region are obstructed by 
the human body (e.g., Fig. 5c and Fig. 5d); thus, further processing 
strategy is required and will be described in next section. In addition, to 
obtain the shadow region, the body orientation (i.e., pedestrian head
ing) needs be known in advance, which can be provided by PDR. To 
describe the shadow region in any body orientations, a new variable Δφ 

is defined here: 

Δφ = φazi − φheading (2) 

where φazi denotes the azimuth angles of shadow region (i.e., [120◦, 
300◦] in Fig. 6); φheading denotes the pedestrian heading (i.e., 90◦ in 
Fig. 6). Then, a fixed range of [30◦, 210◦] is used to describe the shadow 
region.

3. Wrist-worn GNSS/INS integrated system

In this section, the system framework of WGINS is first introduced. 
The proposed algorithm can be divided into two parts: INS-based PDR 
and tightly-coupled GNSS/INS integration. The detailed steps for each 
part will be described separately.

3.1. System overview

As shown in Fig. 7, the proposed WGINS adopts a conventional 
extended Kalman filter (EKF) algorithm framework to fuse single- 
frequency GPS/BDS observations (pseudorange and Doppler) and six- 
axis micro-electro-mechanical-system (MEMS) IMU (three-axis gyro
scope and three-axis accelerometer) measurements. Two key points are 
summarized for WGINS: 1) a strapdown INS-based PDR system is spe
cifically designed for wrist-worn inertial sensors, and high-frequency 
position and attitude information can be obtained; 2) according to the 
prior information provided by PDR and the determined shadow region, 
the obstructed satellites can be detected, which are subsequently down- 
weighted with corresponding weighting strategies to mitigate the im
pacts of GNSS body shadowing. Note that motion recognition has not 
been considered in this paper, namely, the proposed algorithm works 

Fig. 6. Determined shadow region when the participant faces east and GNSS 
antenna attached on left wrist.
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under normal arm swinging conditions.
The coordinate systems used in this paper are briefly introduced 

below. In addition to the conventional earth-centered-earth-fixed-frame 
(e-frame) and navigation-frame (n-frame, pointing to north-east-down), 
body-frame (b-frame) and human-frame (h-frame) are defined as shown 

in Fig. 8. When the INS-Probe is tied to the wrist, the X-axis of the b- 
frame points to the lateral side of the human body. For the h-frame, the 
origin is set at the shoulder and the X-axis is parallel to the walking 
direction. Note that there is a mounting angle between the b-frame and 
h-frame, which should be estimated in real-time to obtain the walking 
direction.

3.2. INS-based PDR

The prior information (i.e., position and attitude) provided by PDR is 
the basis for WGINS to work. Traditional step-model-based PDR algo
rithms estimate the user’s position using step length and walking di
rection, updating the position only when a step is detected. This results 
in a relatively low output frequency (e.g., around 2 Hz). Additionally, 
such methods are unable to provide attitude information, making it 
impossible to capture the actual dynamics of arm swinging. Therefore, 
an INS-based PDR method that is specifically designed for wrist-worn 
inertial sensors is proposed.

3.2.1. INS mechanization
After initialization, INS can output continuous and high-frequency 

position, velocity, and attitude (PVA) results by utilizing the specific 
force and angular rate measurements provided by the embedded 
accelerometer and gyroscope, which is known as INS mechanization. 
After neglecting the small terms of error correction, the equations can be 
written as [21]: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rn
k = rn

k− 1 + vn
kΔt

vn
k = vn

k− 1 +
[
Cn

b,k

(
fb

k − ba

)
+ gn

]
Δt

qn
b,k = qn

b,k− 1 ⊗ q
[(

ωb
k − bg

)
Δt

]
(3) 

where rn and vn represent the position and velocity vector in the n- 
frame, respectively; Cn

b is the rotation matrix from the b-frame to the n- 
frame; fb and ωb represent the acceleration and angle rate measurement 
vector in the b-frame, respectively; ba and bg refer to the bias vector of 
the tri-accelerometer and tri-gyroscope, respectively; gn is the local 
gravity vector in the n-frame; quaternion qn

b denotes the rotation of the 

Fig. 7. System framework for WGINS. The red blocks denote the proposed works in this paper.

Fig. 8. Illustration of the defined b-frame (red arrows) and h-frame 
(blue arrows).
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b-frame with respect to the n-frame; ⊗ denotes the quaternion product; 
Δt is the time interval between the k-th epoch and (k-1)-th epoch.

3.2.2. Filter design
Although INS can provide continuous PVA solutions after initiali

zation, its error can be rapidly accumulated in a very short time (a few 
seconds) by using the low-cost inertial sensors embedded in smart de
vices. Therefore, EKF is usually employed to fuse INS with other navi
gation sources. The 19-dimensional error state vector δxINS is defined as: 

δxINS =
[

δrn δvn φ δbg δba δlb δκ
]T (4) 

where δrn, δvn, φ, δbg, and δba represent the error vectors of position, 
velocity, attitude, gyroscope bias, and accelerometer bias, respectively; 
δlb refers to the error vector of level-arm in the b-frame, which cannot be 
neglected in wrist-worn scenarios and will be explained in subsequent 
part; δκ is the scale error of step length. Then, the state and observation 
equations can be expressed as: 
{

δxk,k− 1 = Φk− 1δxk− 1,k− 1 + wk
δzk = Hkδxk,k− 1 + εk

(5) 

where δxk− 1,k− 1 and δxk,k− 1 represent the previous and predicted error 
state vector, respectively; δzk and Hk are the measurement vector and 
the design matrix, respectively; wk and εk denote the process noise and 
measurement noise, respectively; Φk− 1 is the 19 × 19 state transition 
matrix: 

Φk− 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3×3 I3×3Δt 03×3 03×3 03×3 03×4

03×3 I3×3
(
fn

k ×
)
Δt 03×3 Cn

b,kΔt 03×4

03×3 03×3 I3×3 − Cn
b,kΔt 03×3 03×4

03×3 03×3 03×3 I3×3 03×3 03×4

03×3 03×3 03×3 03×3 I3×3 03×4

04×3 04×3 04×3 04×3 04×3 I4×4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

3.2.3. Pedestrian motion constraint
For pedestrian under normal walking conditions, a basic assumption 

is that the speed is only in the forward direction, and the lateral and 
vertical velocity is equal to zero [21], which is known as pedestrian 
motion constraint. However, the wrist movements are uncoupled with 
human body, so the wrist speed is not consistent with body speed. To 
address this issue, the level-arm described in (4) is estimated in real-time 
to compensate for the velocity discrepancy.

As illustrated in Fig. 9, the wrist swings to different positions when 

the pedestrian under normal walking conditions. However, the lowest 
point (i.e., T2 and T4 in Fig. 9) remains stable relative to the human 
body, which reflects the pedestrian’s position more accurately. Besides, 
when the wrist swings to the lowest point, the whole arm is close to be 
straight. At this moment, the arm swinging is modeled as a single 
pendulum motion, and the body speed can be expressed as: 

vbody = vwrist + ω × l (7) 

where vwrist denotes the wrist speed provided by INS; ω is the angle rate 
of arm swinging, which can be approximately provided by the mounted 
inertial sensor (i.e., the whole arm is regarded as a rigid body); × de
notes the cross product; l is the level-arm from wrist to shoulder (i.e., the 
origin of the defined h-frame). Based on this rule, the pedestrian motion 
constraint can be used more accurate by considering level-arm 
compensation. Note that different users have different arm lengths, so 
the level-arm is considered in filter design and estimated in real-time.

Fortunately, the lowest point can be caught via step detection. In 
general, the norm of tri-accelerometer measurements is used for step 
detection, which can be written as: 

Fig. 9. Diagram of arm swinging for pedestrian under normal walking conditions.

Fig. 10. The norm of tri-accelerometer measurements and corresponding roll 
angles for detected steps. The red and green asterisks denote detected steps 
using signal peaks and valleys, respectively.
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accnorm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
acc2

x + acc2
y + acc2

z

√
(8) 

where accx, accy, and accz denote the tri-accelerometer measurements. 
The signal peak or valley of the accumulated features in the detection 
window is counted as a step [17], as shown in Fig. 10 (top panel). 
Referring to the b-frame illustrated in Fig. 8, roll angle is associated with 
arm swinging, so corresponding roll angles for step detection using 
signal peaks and valleys are shown in Fig. 10 (bottom panel). In static 
state, the wrist is fixed to the lateral side of human body, and the roll 
angles are around − 10◦. In swinging state, the roll angles of detected 
steps using signal peaks are close to that of static state, which verifies 
that the lowest point can be caught by using signal peak to detect step. In 
addition, the roll angle shown in Fig. 10 serves an additional purpose, 
namely, recognizing whether the device is worn on the left or right hand. 
Specifically, the roll angles close to 0◦ indicates that the device is worn 
on the left hand, while the roll angles near ± 180◦ suggests it is worn on 
the right hand.

When a step detected, the pedestrian velocity in the h-frame can be 
written as: 

ṽh
= [ (κ + δκ)SL/Δt 0 0 ]

T
+ εv (9) 

where κ is the scale of step length; SL is the step length, which can be 
estimated via an empirical formula [22]; Δt is the time interval between 
two adjacent steps; εv denotes the observation noise. According to (7), 
the pedestrian velocity derived from INS can be modeled as: 

vh = Ch
bC

b
nv

n + Ch
b
(
ωb ×

)
lb (10) 

The velocity vector, accounting for the error terms, can then be 
expressed as: 

v̂h
= Ch

bC
b
n(I + φ × )(vn + δvn) + Ch

b
( (

ωb + δbg
)
×

)(
lb + δlb

)

≈ vh + Ch
bC

b
nδvn − Ch

bC
b
n(v

n × )φ − Ch
b

(
lb ×

)
δbg + Ch

b
(
ωb ×

)
δlb

(11) 

where Ch
b denotes the rotation matrix from the b-frame to the h-frame. 

To obtain Ch
b , the mounting angle (as illustrated in Fig. 8) needs to be 

estimated in advance. Typically, the principal component analysis (PCA) 
method is employed [23], which assumes that the principal direction of 
arm swinging can reflect the pedestrian heading. After mounting angle is 
estimated, the pedestrian heading can be expressed as: 

φheading = φINS − φmount (12) 

where φINS is the sensor heading; φmount is the mounting angle. The 
observation equation can be written as: 

δzv = v̂h
− ṽh

= Ch
bC

b
nδvn − Ch

bC
b
n(v

n × )φ − Ch
b

(
lb ×

)
δbg+

Ch
b
(
ωb ×

)
δlb − vstepδκ + εv

(13) 

where vstep = [ SL/Δt 0 0 ]
T. Finally, the detailed procedure of the 

proposed INS-based PDR algorithm is outlined in Algorithm 1.
Algorithm 1: Procedure of the proposed INS-based PDR algorithm

Input: Six-axis IMU measurements
GNSS positioning results

Output: High-frequency (e.g., 100 Hz) PVA results
Step1: Initialize the state vector of INS
Step2: INS mechanization using IMU measurements
Step3: if step detected

Estimate step length using empirical formula
Estimate walking direction using PCA
KF update based on pedestrian motion constraint

end if
Repeat steps 2–3 until the data is fully processed

3.3. Tightly-coupled GNSS/INS integration

GNSS/INS integration is the most common positioning solution 
adopted in outdoor environments. As the tightly-coupled algorithm uses 
raw GNSS observations, each satellite can be analyzed individually. 
Therefore, if the obstructed satellites can be detected, lower weights can 
be assigned to these satellites and the impacts of GNSS body shadowing 
can be effectively mitigated.

3.3.1. GNSS observations
To fuse GNSS and INS in tightly-coupled mode, the error state vector 

needs to be extended: 

δx ​ =
[

δxINS
δxGNSS

]

(14) 

where δxINS can be found in (4); δxGNSS =
[
tg
bias tc

bias tdrift
]T; tg

bias and 
tc
bias are the clock bias of GPS and BDS, respectively; tdrift is the clock drift. 

The 22 × 22 state transition matrix is written as: 

Φ22×22 =

⎡

⎢
⎢
⎣

Φ19×19 019×1 019×1 019×1
01×19 1 0 Δt
01×19 0 1 Δt
01×19 0 0 1

⎤

⎥
⎥
⎦ (15) 

where Φ19×19 can be found in (6).
In this paper, single-frequency pseudorange and pseudorange rate 

(derived from Doppler observations) are used. Utilizing the position 
provided by INS, the pseudorange and pseudorange rate can be written 
as: 
⎧
⎨

⎩

P̃ = ρINS − leINS⋅δre + cδtr + εP

̃̇P = leINS⋅
(
ve

r − ve
s
)
+ cδ̇tr + εṖ

(16) 

where P̃ denotes the raw pseudorange observations that considering 

satellite clock bias and atmospheric effects elimination; ̃̇P is the pseu
dorange rate derived from Doppler observations; ρINS is the geometric 
range from satellite to INS position; δre is the position error vector in the 
e-frame; ve

r and ve
s represent the true velocity of receiver and satellite in 

the e-frame, respectively; cδtr is the receiver clock bias in meter; cδ̇tr is 
the receiver clock drift in meter per second; εP and εṖ are the observation 
errors; leINS is the LOS unit vector from satellite to INS position in the e- 
frame, which can be written as: 

leINS =
re

INS − re
s

ρINS
=

re
INS − re

s⃦
⃦re

INS − re
s

⃦
⃦

(17) 

where re
INS and re

s denote the INS position and satellite position in the e- 
frame.

The pseudorange and pseudorange rate derived from INS can be 
expressed as: 
{

P̂ = ρINS

̂̇P = leINS⋅
(
ve

INS − ve
s
) (18) 

where ve
INS = ​ ve

r + δve denotes the INS velocity in the e-frame. Finally, 
the observation equations can be written as: 
⎧
⎨

⎩

δzP = P̂ − P̃ = leINS⋅δre − cδtr + εP

δzṖ =
̂̇P −

̃̇P = leINS⋅δve − cδ̇tr + εṖ

(19) 

Note that δre and δve represent error vectors in the e-frame, which 
should be converted to the n-frame: 
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{
δre = ​ Ce

nδrn

δve = ​ Ce
nδvn (20) 

where Ce
n is the rotation matrix from the n-frame to the e-frame.

3.3.2. Occlusion model
As described above, if the obstructed satellites can be detected, 

corresponding weighting strategies can be adopted to mitigate the im
pacts of GNSS body shadowing. Therefore, the occlusion model 
mentioned in Fig. 7 is introduced here. As shown in Fig. 6, a shadow 
region can be roughly determined after pedestrian heading is provided 
by INS-based PDR. In addition, the azimuth angle of satellite φsat can be 
calculated by using satellite position and INS position. According to (2) 
and (12), whether a satellite is in the shadow region can be determined 
by the following formula: 

φsat − φheading ∈ Δφ (21) 

However, not all the satellites in the shadow region are obstructed by 
human body, so a secondary judgment is necessary to be considered.

Fig. 11 demonstrates the GNSS signal occlusion caused by human 
body. In this paper, the human body is simply modeled as a cuboid, and 
the LOS and NLOS satellites can be distinguished by judging whether the 
LOS vector (from wrist to satellite) passes through the human body. To 
simplify the calculations, the INS position and the satellite position are 
converted to the h-frame: 

⎧
⎨

⎩

rh
INS = rh

INS,0 + Ch
bC

b
nΔrn

INS

rh
s = Ch

bC
b
nC

n
e

(
re

s − re
origin

) (22) 

where rh
INS,0 is the INS position at last step-detected moment, which can 

be obtained after estimating the level-arm; Δrn
INS denotes the position 

variation from last step-detected moment to current epoch; re
s and re

origin 

represent the satellite position and the origin position of h-frame in the 
e-frame, respectively. Then, the LOS vector in the h-frame can be easily 
calculated. Finally, a simple collision detection algorithm is imple
mented to judge whether the satellite is occluded by human body.

In summary, three cases are considered in the proposed occlusion 
model: 1) satellite in open-sky area; 2) satellite in the determined 
shadow region but the LOS vector is not obstructed by human body; 3) 
satellite in the determined shadow region and the LOS vector is 
obstructed by human body. Different weighting strategies will be 
adopted for different cases.

3.3.3. Weighting strategy
In KF model, the precision of observations is described by the mea

surement noise matrix R, which can be written as: 

R = diag
(

σ2
1 σ2

2 ⋅⋅⋅ σ2
n

)
(23) 

where σ2 is the observation variance; n denotes the number of obser
vations. Generally, the abnormal observations are down-weighted so 
that their impacts on final results can be mitigated. Considering the 
impacts of GNSS body shadowing, the variance of the k-th observation is 
defined as: 

σ2
k = σ2

obs + σ2
eph + σ2

ion + σ2
trop + σ2

body (24) 

where σ2
obs, σ2

eph, σ2
ion, and σ2

trop are the variances of measurement noise, 
satellite related errors, ionosphere error, and troposphere error, 
respectively; σ2

body denotes the impacts caused by GNSS body shadowing.
As the shadowing effect on pseudorange observations is difficult to 

be quantified, thus an empirical model is used here. Associated with the 
three cases mentioned in occlusion model, σbody is assigned with 
different values. For case1, the pseudorange observation is not affected 
by human body, thus σbody is set to 0. For case2, since C/N0 data can 
identify the pseudorange quality (as illustrated in Fig. 4), a C/N0- 
dependent weighting strategy is adopted. For case3, the satellite is 
completely obstructed by human body, so the observation is discarded. 
Specifically, σbody is written as: 

σbody =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, case1

k0 ∗ 10
max(CNMAX− C/N0,0)

10 , case2

106, case3

(25) 

where k0 is an experience factor; max(⋅) is the maximum function; 
CNMAX is a constant value set to 40 dB-Hz [24].

In addition to the weight model, the Institute of Geodesy and 
Geophysics III (IGG III) weight function is also employed [25]. The IGG 
III weight function uses a variance expansion factor λi to mitigate the 
impacts caused by gross errors, which is modeled as [26]: 

1
λi
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,ωi ≤ k0

k0

ωi
×

(
k1 − ωi

k1 − k0

)2

, k0 < ωi ≤ k1

10− 6 ,ωi > k1

(26) 

where k0 and k1 are two empirical thresholds; ωi is the standardized 
innovation value: 

Fig. 11. Diagram of the GNSS signal occlusion caused by human body.
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ωi =
|vi|

σvi

(27) 

where vi and σvi denote the innovation value and the corresponding STD. 
The final measurement noise matrix can be written as: 

Rii = λiRii (28) 

Finally, the detailed procedure of the shadowing effects mitigation al
gorithm is presented in Algorithm 2.

Algorithm 2: Procedure of the shadowing effects mitigation algorithm

Input: GNSS raw observations (pseudorange and Doppler)
Navigation ephemeris
Position and attitude results provided by INS-based PDR

Output: PVA results
Step1: Occlusion classification based on the occlusion model

Case1: in open-sky area
Case2: in shadow region
Case3: LOS vector passes through the human body

Step2: Weight adjustment based on (24), (25) and (26)
Step3: KF update using GNSS observations

4. Test results and analysis

In this section, three types of positioning results are analyzed, 
including single GNSS positioning, PDR positioning, and GNSS/PDR 
integrated positioning. The GNSS positioning results are derived from 
the data collected in Section 2.3. In the static state, obstructed satellites 
can be accurately identified, allowing for an analysis of the impact of 
shadowing effects. The PDR and GNSS/PDR positioning results are 
based on data collected using the equipment shown in Fig. 8. For per
formance evaluation, three participants were involved in data collec
tion, and three test trajectories are designed as shown in Fig. 12. The first 
trajectory is a simple rectangular route; the second trajectory is more 
complex and consists of rectangular and curved routes; the third tra
jectory is generated by random movement. Each trajectory takes about 
10 min to walk, namely, one participant collects 30 min of test data. In 

addition, the reference results are provided by the geodetic GNSS 
receiver with ambiguity-fixed RTK solution.

4.1. GNSS positioning performance analysis

In Section 2.3, the shadow region is determined using the static GNSS 
observations. In this case, GNSS positioning results can be analyzed by 
excluding observations from obstructed satellites. To evaluate the im
pacts of GNSS body shadowing on positioning performance, three so
lutions solved by RTKLIB are compared: (1) antenna mounted on the 
wrist (S1); (2) antenna mounted on the wrist with the obstructed sat
ellites removed (S2); (3) antenna mounted on the helmet (S3).

The horizontal positioning errors for two datasets, each lasting 
approximately 30 min, are shown in Fig. 13. To eliminate environmental 
effects, only satellites with elevation angles greater than 30◦ are 
considered in the calculation. The results clearly show that body shad
owing significantly degrades GNSS positioning accuracy in S1. 
Furthermore, the positioning errors are predominantly biased toward 
the north, primarily due to the obstructed satellites being located in the 
south in both datasets. When the obstructed satellites are manually 
excluded (S2), the positioning performance improves considerably. 
However, it still falls slightly short of the accuracy achieved with the 
helmet-mounted antenna (S3). This is mainly because removing satel
lites degrades the satellite geometry, which in turn affects the final 
positioning performance. Overall, these results demonstrate that GNSS 
body shadowing has a substantial impact on positioning accuracy and 
should be further considered in algorithm design for integrated navi
gation systems.

4.2. Positioning performance analysis of wrist-worn PDR

The position and attitude provided by INS-based PDR are key factors 
for occlusion model to work properly. Therefore, the positioning per
formance of two PDR methods is analyzed: 1) conventional INS-based 
PDR (M1); 2) the proposed wrist-worn INS-based PDR considering 
level-arm (M2). The test trajectories of the first participant (P1) are 
shown in Fig. 14. Note that the INS-based PDR can output high- 
frequency PVA results, but for consistency, only the results at step- 
detected moments are used for evaluation.

From Fig. 14, it can be seen that heading drift is the main factor that 
is affecting positioning performance, which is unavoidable for PDR 
methods. The horizontal position errors of the two PDR methods are 
summarized in Table 1. Three statistics are used in this paper, including 
root-mean-square (RMS), circular-error-probable (CEP) 68, and CEP95. 
The average values of the three statistics are 6.71 m, 7.53 m, and 11.38 
m for M1; 4.88 m, 5.17 m, and 8.82 m for M2. Since the magnetometer is 
not currently used in the proposed algorithm, the heading accuracy 
cannot be guaranteed for the two PDR methods; however, the pedestrian 
motion constraint can suppress the heading drift to a certain extent. 

Fig. 12. Test trajectories for performance evaluation.

Fig. 13. Horizontal positioning errors of different SPP solutions.
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While the motion assumption may not be satisfied if the level-arm is 
ignored in wrist-worn scenarios, and low-precision positioning results 
could be obtained when using inaccurate correction information, which 
explains why the test results of M2 are better than those of M1, and 
approximately 27 % of improvement has been achieved in terms of RMS.

4.3. Positioning performance analysis of WGINS

To evaluate the positioning performance of the proposed WGINS, 
two types of strategies are compared: 1) conventional GNSS/INS inte
gration ignoring the impacts of GNSS body shadowing (W1); 2) the 
proposed WGINS (W2). The test trajectories for one participant are 
shown in Fig. 15. In wrist-worn mode, the two tightly-coupled solutions 

Fig. 14. Trajectories of two INS-based PDR methods for one participant.

Table 1 
Statistical results of horizontal position errors for two INS-based PDR methods 
(unit: m).

M1 M2

RMS CEP68 CEP95 RMS CEP68 CEP95

P1 Test1 5.83 6.37 10.58 5.45 6.28 9.71
Test2 3.36 3.52 6.38 2.94 2.48 6.29
Test3 4.20 3.60 8.27 4.22 3.74 8.07

P2 Test1 7.27 8.81 11.91 5.93 6.48 10.99
Test2 6.27 7.28 8.35 6.69 7.76 10.62
Test3 5.84 7.11 9.96 4.07 4.54 7.70

P3 Test1 6.08 6.73 10.27 5.11 5.74 8.63
Test2 10.82 12.35 17.86 5.12 5.59 8.21
Test3 10.70 12.01 18.85 4.38 3.95 9.11

Mean 6.71 7.53 11.38 4.88 5.17 8.82

Fig. 15. Trajectories of the methods ignoring (W1) and considering (W2) GNSS body shadowing.

Table 2 
Statistical results of horizontal position errors for the two integrated methods 
(unit: m).

W1 W2

RMS CEP68 CEP95 RMS CEP68 CEP95

P1 Test1 2.23 2.49 3.55 1.23 1.33 2.01
Test2 1.84 2.01 2.96 1.40 1.44 2.36
Test3 1.83 2.00 2.80 1.32 1.48 1.85

P2 Test1 2.59 2.70 4.53 1.33 1.49 2.23
Test2 1.38 1.53 2.26 1.17 1.28 1.84
Test3 1.58 1.68 2.66 1.43 1.47 2.42

P3 Test1 3.65 4.21 5.59 2.48 2.79 3.81
Test2 3.17 3.56 5.15 2.49 2.69 3.71
Test3 3.51 4.21 5.43 2.53 2.95 3.69

Mean 2.42 2.71 3.88 1.71 1.88 2.66
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perform much better than the results shown in Fig. 13, which verifies 
that combining GNSS with INS-based PDR can effectively improve the 
positioning accuracy. Moreover, it is observed that the positioning ac
curacy can be further improved after considering GNSS body shadowing 
effects, indicating that the proposed algorithm is effective to a certain 
extent.

Corresponding RMS, CEP68, and CEP95 of horizontal position errors 
are summarized in Table 2; besides, the cumulative distribution function 
(CDF) of the two solutions in all the tests is shown in Fig. 16. The average 
values of the three statistics are 2.42 m, 2.71 m, and 3.88 m for W1; 1.71 
m, 1.88 m, and 2.66 m for W2. After comparing the statistical results, it 
is found that there is no significant improvement in positioning perfor
mance, and approximately 29 % improvement has been achieved in 
terms of RMS for the proposed algorithm. Benefit from the GNSS/INS 
integration, the larger gross errors can be easily detected by using the 
IGG III weight function. However, small ranging errors could appear 
when the signal occlusion is not so serious and conventional method 
may not be effective in this case. For the proposed WGINS, the 
obstructed satellites can be selected out and down-weighted, that is, the 
impacts of small ranging errors can also be mitigated. As the proposed 
algorithm does not conflict with conventional robust estimation, a better 
positioning performance can be achieved by combining the two 
methods.

In review of the proposed algorithm, there are two points that need 
to be emphasized. First, erroneous judgement is unavoidable, because 
the occlusion model is not so accurate. Second, as the shadowing effect 
on pseudorange observations is difficult to be quantified, an empirical 
model is used, which may not coincident with the actual situations. 
However, one of the main purposes of this paper is to highlight the 
impacts of GNSS body shadowing on pseudorange observations, and 
further investigations should be conducted to develop a more refined 
model.

5. Conclusion

In this paper, a wrist-worn and tightly-coupled GNSS/INS integrated 
system (i.e., WGINS) for pedestrian positioning is proposed, which takes 
GNSS body shadowing into account. The impacts of GNSS body shad
owing on pseudorange observations are investigated quantitatively ac
cording to the tests conducted in an open-sky environment. Then, a 
specifically designed INS-based PDR algorithm is proposed, which can 
output high-frequency position and attitude information. Finally, uti
lizing the prior information, the obstructed satellites can be detected, 
and an empirical weight model is established to mitigate the impacts of 
GNSS body shadowing.

To evaluate the positioning performance of the proposed algorithm, 

three participants are involved in data collection. Both wrist-worn PDR 
and GNSS/INS integration algorithms have been tested. For PDR results, 
it is verified that the level-arm must be considered in wrist-worn mode. 
Horizontal position error of 4.88 m (RMS) has been achieved for the 
proposed INS-based PDR, with approximately 710 m of walking distance 
in 10 min. For GNSS/INS integration results, it is observed that the 
impacts of GNSS body shadowing cannot be ignored. Using the proposed 
weight model for the shadowed GNSS observations, the degradation can 
be effectively mitigated, and the horizontal position error is reduced 
from 2.42 m to 1.71 m (RMS).

For the future work, some issues should be further investigated. First, 
a more refined occlusion model should be established in future work. In 
addition, the experimental scope could be further expanded. For 
example, the performance of the proposed method could be evaluated 
when the pedestrian performs irregular actions such as waving or 
running. Moreover, the proposed algorithm is only tested in an open-sky 
environment, more tests in typical urban environments should be 
conducted.
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