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Abstract—Pedestrian navigation using smart devices has 
become increasingly prevalent in daily life. Typically, the user’s 
location in outdoor environments can be obtained via the 
embedded global navigation satellite system (GNSS) chip. 
However, in urban environments, the performance of 
conventional GNSS positioning is significantly degraded due to 
multipath effects and non-line-of-sight (NLOS) receptions that 
ruin the GNSS observations. To address this challenge, this paper 
proposes a robust GNSS/inertial navigation system (INS) 
integrated system for pedestrian navigation in urban 
environments. Based on robust optimization algorithm, the 
proposed method utilizes the spatial consistency between multi-
epoch GNSS pseudorange observations and pedestrian dead 
reckoning (PDR) trajectory to detect GNSS outliers. Then, the 
fault-free GNSS observations are integrated with INS-based PDR 
via the conventional robust Kalman filter (RKF) in tightly-
coupled mode. To validate the performance of the proposed 
method, nine sets of test data were collected covering three 
typical urban scenarios. Experimental results show that the 
proposed method achieves an average horizontal positioning 
accuracy of 10.21 m (95%), compared to 17.27 m for the 
conventional RKF, representing an improvement of 
approximately 41%. 
 
Index Terms—Pedestrian navigation, global navigation satellite 
system (GNSS)/inertial navigation system (INS) integration, 
spatial consistency check, GNSS outlier detection, robust 
optimization. 

 

I. INTRODUCTION 
OCATION-based services (LBS) have brought great 
convenience to daily life [1], which enable personal 
localization and real-time navigation. Generally, smart 

devices such as smartphones and smartwatches serve as the 
primary platforms for providing LBS, and three principal 
approaches have been adopted. The first utilizes the low-cost 
global navigation satellite system (GNSS) chip to determine 
the user’s location in outdoor environments [2]. The second 
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relies on wireless signals such as Wi-Fi and Bluetooth to 
identify the user’s position in indoor environments [3]. The 
third approach is known as pedestrian dead reckoning (PDR), 
which just relies on the built-in inertial measurement unit 
(IMU) [4]. In practical applications, PDR is usually integrated 
with the other two methods to achieve higher positioning 
accuracy. 

In current stage, GNSS is the most commonly used 
approach for pedestrian navigation using smart devices. 
Generally, GNSS chips can provide satisfactory solutions in 
open-sky environments. However, as urban activity 
intensifies, GNSS positioning in dense cityscapes faces 
increasing challenges [5]. In complex urban environments, 
multipath effects and non-line-of-sight (NLOS) receptions 
caused by high-raise buildings and other obstructions severely 
ruin the GNSS observations, causing final performance 
significantly degraded, even to an unacceptable level [6]. 
Consequently, extensive research has been devoted to 
detecting and mitigating GNSS outliers under these 
conditions, which is precisely the challenge this paper aims to 
address. 

A. Outlier Detection for GNSS Positioning 
For GNSS positioning, various techniques have been 

developed to detect and mitigate observation outliers. 
Receiver autonomous integrity monitoring (RAIM) is a 
classical fault detection and exclusion (FDE) algorithm that 
has been widely applied in GNSS positioning [7]. It works 
based on consistency check among redundant range 
measurements and assumes that only a single fault exists, 
which significantly limits its effectiveness in urban 
environments where multiple faults simultaneously occur [8]. 
To address this limitation, advanced RAIM (ARAIM) with 
multiple hypothesis solution separation (MHSS) algorithm has 
been proposed, which allows multiple faults detection and 
exclusion [9]. Moreover, Yang and Xu [10] introduced a 
robust-estimation-based RAIM, which can process multiple 
constellations and multiple outliers. In contrast to RAIM-
based approaches, Wen et al. [11] utilized random sample 
consensus (RANSAC) to mitigate multiple outliers, and the 
core principle remains rooted in consistency check. Despite 
the effectiveness of the mentioned methods, it remains a 
challenge for them to be applied in the conditions where the 
number of redundant fault-free observations are insufficient, 
particularly in urban environments. 

Additionally, environmental sensing has emerged as an 
effective strategy for GNSS outlier detection [12]. For 
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instance, Wang et al. [13] proposed a shadow matching 
approach, which utilizes a three-dimensional (3D) city model 
to enhance urban positioning accuracy. Furthermore, Bai et al. 
[14] employed a sky-pointing fish-eye camera to identify and 
exclude NLOS receptions. El-Mowafy et al. [15] introduced a 
novel approach for integrity monitoring by combining 
ARAIM and 3D city models. More recently, Weng et al. [16] 
proposed a sidewalk matching technique for pedestrian 
navigation in urban canyons. This technique does not rely on 
3D building models, but a simple pedestrian map and 
smartphone sensors (i.e., accelerometer and gyroscope) are 
needed. A common limitation of these methods is the reliance 
on additional environment information, which may not be 
readily available or convenient to obtain. 

B. Outlier Detection for GNSS/INS Integrated Positioning 
In addition to GNSS positioning, GNSS/inertial navigation 

system (INS) integration has been a promising solution for 
pedestrian navigation [17]. On the one hand, fusion algorithms 
help mitigate the impact of GNSS outliers on positioning 
accuracy. On the other hand, in some areas where GNSS 
signals are not available, the integrated system can still work 
for a period of time. Nevertheless, GNSS outlier detection 
remains essential to ensure reliable positioning performance in 
complex urban environments. 

For the fusion algorithm, Kalman filter (KF) has been 
widely used [18]. To mitigate GNSS outliers, robust KF 
(RKF) with M-estimation is one of the classical methods [19]. 
The robust chi-square test method (RCTM) is another classical 
approach that detects GNSS outliers by using innovation 
vector generated in filtering process [20]. Moreover, 
RANSAC algorithm has been adopted in tightly-coupled 
GNSS/INS integration [21]. Since only two fault-free satellites 
are screened out, the iteration number of this algorithm is 
greatly reduced. Besides abrupt faults, slow growing error 
(SGE) also need to be considered in KF model [22]. 
Generally, an approach known as autonomous integrity 
monitoring by extrapolation (AIME) is used to detect SGE, 
which relies on multi-epoch innovation vectors and 
corresponding covariance matrices [23]. More recently, Jiang 
et al. [24] proposed an enhanced AIME algorithm, and the 
difference is that the test statistics for each satellite are 
calculated individually, which means that the faulty satellites 
can be more easily identified in tightly-coupled mode. 

Besides KF-based fusion algorithm, GNSS/INS integration 
using factor graph optimization (FGO) has been widely 
investigated in recent years. The differences between the FGO 
and KF approaches are that the KF has lower computational 
load, while FGO benefits from the ability to leverage 
historical data. Sunderhauf et al. [25] introduced the robust 
optimization from simultaneous localization and mapping 
(SLAM) to GNSS multipath mitigation problem. In this 
approach, GNSS-based localization is modelled as factor 
graphs and solved using nonlinear least square methods. Then, 
a comprehensive comparison between FGO and extended KF 
(EKF) has been conducted [26]. It is concluded that the FGO-
based sensor fusion performs better than that of EKF in both 

loosely-coupled and tightly-coupled mode, but the drawback 
is that FGO leads to a greater computational load as all 
historical data are used. Furthermore, an approach known as 
graduated non-convexity (GNC) [27] is introduced to FGO for 
GNSS outlier mitigation, and a coarse-to-fine approach is 
proposed to eliminate the need for an accurate initial guess 
[12]. More relevantly, IMU-based PDR/GNSS integration via 
FGO has been implemented on smartphones [28], [29], and a 
walking gaits aided method is adopted to suppress 
pseudorange outliers [30]. 

According to the literature review, KF-based framework is 
more suitable for smart devices due to lower computational 
load. However, FGO-based methods demonstrate that GNSS 
outlier detection can be effectively improved by using 
historical data. Therefore, a hybrid approach that combines the 
respective advantages of both methods is proposed in this 
paper. In brief, historical measurements are utilized for GNSS 
outlier detection; then, the detected satellites are discarded in 
the KF-based GNSS/INS integration. In this paper, the use of 
historical data for GNSS outlier detection is termed spatial 
consistency check. This method is based on the fact that the 
changes in multi-epoch GNSS pseudorange observations 
should correspond to the variations of pedestrian’s spatial 
position. Conversely, when the changes are inconsistent with 
the historical trajectory, the corresponding satellite is likely to 
be faulty. 

Specifically, the proposed algorithm consists of three steps. 
First, based on the relative PDR trajectory formed from the 
IMU measurements, a lightweight robust optimization 
algorithm is designed to estimate the absolute historical 
trajectory. Then, the optimized results are used for GNSS 
outlier detection by performing the spatial consistency check. 
Finally, the fault-free GNSS observations are integrated with 
INS-based PDR via the conventional RKF in tightly-coupled 
mode. 

The remainder of this paper is organized as follows: Section 
II introduces the methodologies of the proposed method. 
Section III describes the GNSS/INS integration via EKF in 
detail. Section IV interprets experimental setup. Section V and 
Section VI present test results and discussions, respectively. 
Section VII summaries the proposed method and outlines 
future works. 

II. GNSS OUTLIER DETECTION BASED ON SPATIAL 
CONSISTENCY CHECK 

In this section, the principles of the proposed method are 
described in detail, which consists of three parts. First, the 
conventional PDR algorithm is introduced. Then, a sliding-
window-based robust optimization algorithm is designed, 
which converts the relative PDR trajectory into an absolute 
trajectory. Finally, the core idea of GNSS outlier detection 
using spatial consistency check is illustrated. 

A. PDR Trajectory Generation 
The conventional PDR algorithm consists of three 

modules, namely, step detection, step length estimation, and 
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pedestrian heading estimation. Generally, the accelerometer is 
used for step detection, and the norm of three-axis 
measurements is adopted as a detection feature [31]:                                                             

                             (1) 
where , , and  represent the tri-accelerometer 
measurements. The signal peak or valley of the accumulated 
features within the detection window is identified as a step 
[32]. For step length estimation, an empirical formula is 
typically used [33]. Additionally, pedestrian heading 
estimation is a key factor that determines PDR performance, 
which can be provided by INS-based PDR and will be 
described in Section III. After completing the three steps, the 
PDR trajectory can be expressed as: 

                     (2) 

where  and  represent the north and east positions in the 
local-frame;  and  denote the step length and pedestrian 
heading, respectively; the superscript  denotes the step 
number. The initial position (  and ) is set to 0. 

However, it should be noted that the time when a step 
detected ( ) is usually not consistent with the GNSS 
sampling time ( ). Thus, the position difference caused by 
time inconsistency requires additional consideration. In this 
paper, the PDR position at GNSS sampling time is obtained 
via the time-based linear interpolation, i.e.: 

        (3) 

where  and  represent the time of two adjacent steps 
and . Note that the trajectory obtained in 
this step is a relative PDR trajectory. To obtain the absolute 
historical trajectory, further processing using an optimization 
algorithm is required. 

B. Optimization Algorithm 
Generally, FGO-based approaches utilize sliding window to 

process multi-epoch observations and ensure real-time 
performance. However, one node in FGO requires multiple 
parameters to estimate, so the number of parameters grows with 
the sliding window size. In contrast, a lightweight optimization 
algorithm is proposed in this paper, and the relative position of 
each node in the sliding window is obtained from the PDR 
trajectory. Therefore, fewer parameters that need to be estimated 
and its number is always unchanged. 

The relation between multi-epoch GNSS pseudorange 
observations and PDR trajectory is illustrated in Fig. 1. To 
establish a connection with the GNSS pseudorange observations, 
the relative PDR trajectory generated in previous step needs to 
be converted into an absolute trajectory. It can be observed from 
Fig. 1 that there is a position offset between the two trajectories, 

namely, and  (  is not demonstrated in Fig. 1). In 
addition, there is a rotation angle that needs to be considered. On 
the one hand, the rotation angle can be used for heading 
initialization of INS.  The proposed algorithm assumes the initial 
heading is equal to 0. Thus, the rotation angle shown in Fig. 1 
represents the difference between the initial heading and the 
absolute heading. If this angle can be estimated, the heading can 
be compensated within the algorithm [34]. On the other hand, 
after heading initialization, the rotation angle can be used to 
compensate the heading errors of PDR trajectory introduced by 
INS-based PDR. Moreover, considering that the step length is 
estimated using an empirical model and cannot adapt to different 
users, the scale factor also needs to be taken into account. Within 
a short duration, it is assumed that the pedestrian walks on a flat 
surface, so the 3D coordinates of the absolute trajectory can be 
written as: 

               (4) 

where the superscript  and  denote the absolute and the 
relative coordinates, respectively; , , and  are the 
initial position of the absolute PDR trajectory;  is the scale 
factor;  is the rotation angle. 

 
Fig. 1. The relation between multi-epoch GNSS pseudorange 
observations and PDR trajectory. 
 

To estimate the parameters appearing in (4), a sliding- 
window-based optimization algorithm is designed here (20-
second window size). According to the satellite positioning 
principles, the GNSS pseudorange observation can be expressed 
as: 

             (5) 

where  denotes the raw pseudorange observation in the k-th 
epoch of the j-th satellite;  is the geometric range from satellite 
to GNSS receiver;  and  are the clock bias of receiver and 
satellite, respectively;  is the speed of light;  and  
represent the ionospheric and tropospheric delay in meter, 
respectively;  denotes the measurement noise and other 
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unmodeled errors, such as multipath effects and NLOS 
receptions. 

As illustrated in Fig. 1, the pseudorange residual derived 
from the absolute PDR trajectory can be expressed as: 

          (6) 

where  is the raw pseudorange observation that considering 

satellite clock bias and atmospheric effects elimination;  is the 

satellite position;  is the receiver 
position provided by the absolute PDR trajectory;  is the 
standard deviation of pseudorange measurement, which can be 
modeled as: 
  (7) 

where , , , and  are the standard 
deviation of measurement noise, satellite related errors, 
ionosphere error, and troposphere error, respectively. 

In addition, to make use of GNSS Doppler observations, the 
average velocity of pedestrian can be calculated using the 
absolute PDR trajectory, i.e.: 

                       (8) 

where  is the time interval between two 
adjacent steps. Then, the GNSS Doppler observation can be 
expressed as: 

     (9) 

where  is the raw Doppler measurement;  is the wavelength; 
 is the line-of-sight (LOS) unit vector from receiver to 

satellite;  is the satellite velocity;  
is the receiver velocity derived from the absolute PDR trajectory; 

 and  are the clock drift of receiver and satellite, 
respectively;  is the measurement noise. Finally, the Doppler 
residual can be formulated as: 

(10) 

where  is the raw Doppler observation that considering 
satellite clock drift elimination;  is the standard deviation of 
Doppler observation, which can be modeled as: 

                                 (11) 

where  is the corresponding elevation angle. 
Furthermore, it is assumed that the clock drift is constant 

over the sliding window. Then, the receiver clock bias and clock 
drift can be modeled as: 

                       (12) 

where  and  are the clock bias and clock drift of the first 
epoch for the sliding window.  Therefore, the state vector that 
needs to be estimated is written as: 

               (13) 
Finally, the objective function can be expressed as: 

      (14) 

However, in complex urban environments, the outliers in GNSS 
pseudorange observations need to be further considered in the 
optimization algorithm. A standard approach to address outliers 
is to use robust cost functions, i.e.: 

(15) 

where  denotes a robust cost function, and Huber loss 
function is used in this paper [35]. 

C. Spatial Consistency Check 
Note that the positioning results can be obtained after 

performing the optimization algorithm. However, the influence 
of GNSS outliers on positioning performance cannot be 
completely eliminated. Since the optimization algorithm does 
not guarantee absolute positioning accuracy, a spatial 
consistency check is adopted, which focuses on the relative 
variations in the pedestrian’s position. 

For a given satellite across different epochs, the variations 
of GNSS pseudorange observations are associated with the 
changes of receiver’s position. Therefore, in the sliding 
window, the pseudorange residuals calculated from the 
optimized results should remain roughly consistent in the 
conditions without GNSS outliers. The satellite with 
inconsistent residuals is more likely to be faulty, which is the 
core idea of the proposed spatial consistency check.  

For the j-th satellite in the sliding window, the pseudorange 
residual is defined as: 

                       (16) 

where  represents the clock bias that obtained from (12) 
and (15);  is the geometric range from satellite to the 
optimized position: 

 (17) 
Then, the spatial consistency check is performed and GNSS 
outlier can be judged through the formula: 

                  (18) 
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where , , and  denote the maximum, 
minimum, and standard deviation function, respectively;  
and  are two empirical thresholds set according to the 
measurement noise. For example, GNSS observations can be 
collected over a period of time in an open-sky environment to 
calculate the standard deviation ( ) of the pseudorange noise, 
which is then defined as . Subsequently, can be set to 
four or six times  (i.e.,  or ). Specifically, the 
two thresholds are assigned with 6.0 and 1.5 in this paper, 
respectively. 

III. GNSS/INS INTEGRATION 
In this section, the system framework of the proposed 

algorithm is first introduced. Then, the detailed steps, including 
INS mechanization, filter design, pedestrian motion constraint, 
and tightly-coupled GNSS/INS integration, are described 
individually. 

 
Fig. 2. System framework of the proposed method. 

A. System Overview 
The system framework of the proposed method is shown in 

Fig. 2, which adopts a conventional EKF framework to fuse 
GNSS observations and IMU measurements. The system 
consists of two parts: INS-based PDR and tightly-coupled 
GNSS/INS integration. INS-based PDR utilizes pedestrian 
motion constraint to improve the positioning performance. 
More important, it makes the navigation system can work in 
the area without GNSS signals. In addition, the key element, 
namely, PDR trajectory, is provided by this module. On the 
other hand, GNSS module also plays an important role in the 
algorithm framework, which provides absolute position 
information for the navigation system. Using classical RKF 
approaches, large-scale outliers are easy to detect, whereas 

small-scale outliers are more challenging to identify. The 
proposed method utilizes the characteristic that PDR can 
provide high precision positions in a short term to detect faulty 
satellites, which address this issue to a certain degree. 
 

B. INS Mechanization 
INS mechanization utilizes the specific force and angular 

rate measurements provided by the embedded accelerometer 
and gyroscope to provide continuous and high-frequency 
position, velocity, and attitude (PVA) results, which serves as 
the foundation of strap-down inertial navigation. After 
neglecting the small terms of error correction, the simplified 
form of INS mechanization is given as [36]: 

      (19) 

where  and  are the position and velocity vector in the 
navigation-frame (n-frame), respectively;  is the 
transformation matrix from the body-frame (b-frame) to the n-
frame;  and  are the three-axis acceleration and angle 
rate measurements in the b-frame, respectively;  is the local 
gravity vector in the n-frame;  and  are the bias vector of 
the accelerometer and gyroscope, respectively;  is the time 

interval between two epochs;  denotes the cross-product 
form of a vector. 

C. Filter Design 
Since the error of INS can be rapidly accumulated in a few 

seconds when using the low-cost inertial sensors embedded in 
smart devices, EKF-based approaches are usually adopted to 
fuse INS with GNSS. Considering GPS and BDS, the 22-
dimensional error state vector is defined as: 
 (20) 
where , , and  represent the error vectors of 
position, velocity, and attitude in the n-frame, respectively; 

 refers to the error vector of level-arm (from wrist to 
shoulder) in the b-frame, which is specifically design for 
swing mode;  denotes the scale error;  and  denote 
the clock bias of GPS and BDS, respectively;  is the clock 
drift. Then, the discrete linearization of the system error model 
can be expressed as: 

                 (21) 

where  is the predicted error state vector;  
represents the previous error state vector;  is the 
measurement vector;  denotes the design matrix;  and 

 are the process noise and measurement noise, respectively; 
 is the 22×22 state transition matrix: 
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                               (22) 

 

 (23) 

                            (24) 

where  refers to the zero matrix. 

D. Pedestrian Motion Constraint 
When the pedestrian walks under normal conditions, it is 

assumed that the lateral and vertical velocities in the human-
frame (h-frame, the origin is set at the shoulder and the X-axis 
is parallel to the walking direction) are equal to 0 [37]. When a 
step detected, the pedestrian velocity in the h-frame can be 
written as: 

               (25) 
where  is the step length;  is the time interval between 
two adjacent steps;  is the observation noise. 

Then, the predicted velocity in the h-frame from INS can 
be expressed as: 

            (26) 

where ;  is the 
transformation matrix from the b-frame to the h-frame. The 
mounting angle in heading is the most important element to 
calculate . In general, the principal direction of arm 
swinging is consistent with the walking direction, so the 
principal component analysis (PCA) method is employed to 
obtain  [38]. The pedestrian heading mentioned in (2) can 
be expressed as: 

                              (27) 
where  is the sensor heading provided by INS 
mechanization;  is the mounting angle estimated via 
PCA. Finally, the observation equation is given as: 

  (28) 

where . 

E. Tightly-coupled GNSS/INS Integration 
In this paper, single-frequency pseudorange and Doppler 

observations are used. When the satellite is identified as 
unreliable via the spatial consistency check, it no longer 

participates in the calculation. Utilizing the position provided 
by INS mechanization, the observation equations can be 
written as: 

            (29) 

where  is the pseudorange observations that eliminates 

satellite clock bias and atmospheric effects;  is the 
pseudorange rate derived from Doppler observation, and the 
satellite clock drift is eliminated; the superscript  denotes the 
earth-centered-earth-fixed (ECEF) coordinate system (e-
frame);  is the distance from satellite 
position  to INS position ; , , and  denote the 
position error vector, velocity of receiver and satellite in the e-
frame, respectively;  and  are the clock bias (in meter) 
and clock drift (in meter per second), respectively;  and  

are the measurement errors;  is the LOS unit vector 
from satellite to INS position in the e-frame. 

Then, the predicted pseudorange and pseudorange rate from 
INS can be expressed as: 

                      (30) 

where  is the INS velocity. Finally, the 
observation equation is given as: 

        (31) 

where  and ;  denotes the 
transformation matrix from the n-frame to the e-frame. 

F. Weight Functions 
To address GNSS outliers, RKF is one of the classical 

methods that has been widely used. Generally, a weight 
function is employed to suppress gross errors and enhance the 
positioning robustness. In this paper, the Institute of Geodesy 
and Geophysics III (IGG III) weight function is used [19]: 

                     (32) 

where  is the coefficient that scales the measurement 
covariance matrix;  and  are two thresholds with 
experienced values;  is the standardized innovation value.  

However, the weight function is typically effective when 
mitigating abrupt faults. In GNSS/INS integration, the 
detection of SGEs requires additional consideration. To 
address this issue, the enhanced AIME algorithm [24], as 
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previously introduced, is adopted here. This algorithm utilizes 
multi-epoch innovation vectors and their covariance matrices 
to construct test statistics. For a given satellite, the test statistic 

 can be formulated as follows: 
                         (33) 

        (34) 

where  is the innovation value;  is the length of the sliding 
window;  is the principal diagonal element of the 
covariance matrix for the j-th satellite in the i-th epoch, and 
the covariance matrix is expressed as: 

                          (35) 
where  is the measurement matrix;  is the covariance 
matrix for the predicted state vector;  is the measurement 
covariance matrix. When  exceeds the predefined threshold, 
this observation is considered to be faulty. More detailed 
descriptions can be found in [24]. 

IV. TEST DESCRIPTION 
To validate the performance of the proposed algorithm, 

nine sets of test data were collected across three typical urban 
scenarios, and the test trajectories are designed as shown in 
Fig. 3. Scenario1 (S1) is a typical avenue environment, 
partially obstructed by high-rise buildings. Scenario2 (S2) is 
heavily surrounded by high-rise buildings, resulting in severe 
GNSS signal obstruction. Scenario3 (S3) is a typical shopping 
mall environment, where approximately half of the sky is 
obstructed. S3 contains numerous glass walls, which introduce 
significant multipath effects and NLOS receptions. In this 
paper, three datasets were collected for each scenario, with 
each dataset containing about 15–20 minutes of valid data. 

In the complex urban environments shown in Fig. 3, 
GNSS-based systems alone cannot provide stable and reliable 
reference results. Thus, the ground truth was obtained by using 
a handheld 3D laser scanner (Fig. 4a). To obtain the absolute 
coordinates, three high-precision GNSS reference points were 
first measured under good observation conditions. Then, 
relative positions were acquired using the 3D laser scanner. 
When passing through a reference point, the corresponding 
time and relative coordinates were recorded. Finally, absolute 
positions were derived through translation and rotation 
alignment. In addition, since wrist-worn devices such as 
smartwatches and wristbands are gaining popularity and have 
emerged as viable alternatives for implementing LBS [39], 
related data were collected in wrist-worn mode, as shown in 
Fig. 4b. The GNSS observations and IMU measurements were 
collected by INS-Probe, an integrated navigation module 
consisting of u-blox F9P and TDK ICM-20602. 

 
Fig. 3. Surrounding environment and test trajectories for 
performance evaluation. 
 

 
Fig. 4. Equipment used for data collection. 
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V. TEST RESULTS 
For performance evaluation, five positioning strategies are 

compared, as detailed in Table I. The horizontal positioning 
trajectories of the five methods in three scenarios are shown in 
Fig. 5. From SPP results, it can be observed that S1 yields the 
best positioning performance, as the avenue environment 
imposes minimal obstruction and results in limited 
degradation of positioning accuracy. In contrast, S2 is heavily 
surrounded by high-rise buildings, and the positioning 
performance is significantly degraded due to severe signal 
obstruction. Moreover, S3 represents a typical urban 
environment, and positioning results in this scenario are 
notably affected by multipath effects and NLOS receptions. In 
particular, case2 within S3 demonstrates especially poor 
performance. The primary factor contributing to this 
degradation is the orientation of the GNSS antenna during data 
collection. In case1 and case3, the antenna predominantly 
faced the urban road (i.e., the open sky). However, in case2, 
the antenna was mostly positioned between the high-rise 

buildings and human body, which causes further satellite 
obstruction and leads to a substantial deterioration in 
positioning accuracy. 

TABLE I 
DESCRIPTION FOR THE POSITIONING SOLUTIONS 

Solutions Description 

SPP Positioning results provided by u-blox F9P 

OPT Positioning results provided by the proposed 
optimization algorithm, i.e., equation (15) 

TC Tightly-coupled GNSS/INS integration with 
robust estimation, i.e., equation (32) 

AIME-TC TC enhanced by AIME, i.e., equation (33) 

PA-TC TC enhanced by the proposed algorithm, 
i.e., equation (18) 

 

 

 

 
Fig. 5. Horizontal positioning trajectories of the five methods in three scenarios. 
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TABLE II 
STATISTICAL RESULTS OF HORIZONTAL POSITION ERRORS FOR THE FIVE METHODS (UNIT: M) 

 SPP OPT TC AIME-TC PA-TC 

 RMS %68 %95 RMS %68 %95 RMS %68 %95 RMS %68 %95 RMS %68 %95 

S1 

case1 9.84 10.32 18.42 5.81 6.27 9.84 7.13 6.08 14.73 6.78 5.62 14.86 3.98 3.94 7.45 

case2 13.37 14.11 26.46 6.11 6.59 9.36 7.51 7.94 11.49 6.62 7.09 9.98 4.84 5.42 7.91 

case3 14.65 18.33 23.13 6.19 6.54 10.45 7.71 7.98 14.65 7.65 7.56 15.45 3.63 3.92 6.35 

S2 

case1 13.02 12.33 26.15 7.09 7.11 12.31 8.35 8.80 15.17 5.12 5.59 8.55 5.37 5.51 10.84 

case2 10.38 9.55 20.42 6.66 6.48 12.66 6.33 5.63 12.60 4.35 4.02 8.20 4.81 5.19 8.63 

case3 11.74 11.15 22.48 7.36 7.35 12.31 11.90 7.44 31.60 5.12 4.79 9.14 4.55 4.25 9.74 

S3 

case1 16.41 10.92 35.22 8.00 5.83 19.91 7.03 4.67 18.94 6.86 4.92 18.55 5.84 5.10 13.52 

case2 57.92 57.26 109.98 10.88 11.84 19.68 10.70 10.88 19.23 10.37 11.01 18.31 8.03 7.01 17.34 

case3 19.84 8.39 30.57 7.29 5.82 16.96 6.31 3.80 17.07 6.01 3.58 16.81 4.45 2.96 10.13 

Mean 18.57 16.93 34.76 7.26 7.09 13.72 8.11 7.02 17.27 6.54 6.02 13.32 5.05 4.81 10.21 

 
Additionally, compared with SPP, the other four methods 

demonstrate satisfactory performance in most tests. However, 
it is found that the TC results exhibit noticeable trajectory drift 
in certain areas (e.g., case3 within S2). This drift primarily 
manifests as a gradual deviation accumulating over time. In 
comparison, the trajectory drift observed in the AIME-TC 
results is significantly suppressed, which indicates that the 
employed AIME algorithm is effective in detecting and 
mitigating SGEs. 

 
Fig. 6. The CDF of SPP, OPT, TC, AIME-TC, and PA-TC in 
three scenarios. 
 

Fig. 6 shows the cumulative distribution function (CDF) of 
the five solutions in nine tests. The root mean square (RMS), 
68%, and 95% of the horizontal position errors for each 
method are summarized in Table II. The average values of the 
three statistics in horizontal position errors are 18.57 m, 16.93 

m, and 34.76 m for SPP; 7.26 m, 7.09 m, and 13.72 m for OPT; 
8.11 m, 7.02 m, and 17.27 m for TC; 6.54 m, 6.02 m, and 
13.32 m for AIME-TC; 5.05 m, 4.81 m, and 10.21 m for PA-
TC. The statistical results clearly demonstrate that the TC-
based method significantly outperforms GNSS SPP, 
highlighting the advantages of GNSS/INS integration for 
navigation applications in urban environments. 

TABLE III 
AVERAGE SATELLITE NUMBER OF TOTAL AND USED IN THREE 

SCENARIOS FOR THE PROPOSED METHOD 

 
S1 S2 S3 

Total Used Total Used Total Used 

case1 15.6  3.9  9.0  2.4  12.9  4.8  

case2 13.8  4.0  10.9  3.4  11.4  3.1  

case3 15.6  3.4  8.4  2.3  15.2  4.7  

Mean 15.0  3.8  9.4  2.7  13.2  4.2  
 

 
In addition, the optimization algorithm performs slightly 

better than the TC method but worse than the AIME-TC and 
PA-TC methods. Although a cost function has been introduced 
to mitigate the influence of GNSS outliers, such errors cannot 
be completely eliminated. Moreover, the optimization problem 
is solved using the classical Gauss-Newton method, which 
imposes certain requirements on the accuracy of the initial 
guess. If the initial state vector is inaccurate, the algorithm 
may converge to a local optimum. As mentioned previously, 
GNC has been adopted in FGO-based algorithm. This 
approach follows a coarse-to-fine strategy, reducing sensitivity 
to initial values and enhancing robustness against GNSS 
outliers. Therefore, more investigations should be conducted 

0 10 20 30 40
Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

(S1)

0 10 20 30 40
Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

(S2)

0 10 20 30 40
Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

(S3)

SPP
OPT
TC
AIME-TC
PA-TC

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3594711

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 24,2025 at 08:19:03 UTC from IEEE Xplore.  Restrictions apply. 



10 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
by using more advanced methodologies to further improve the 
performance of the proposed optimization algorithm. 

By integrating the AIME algorithm, SGEs can be 
effectively detected and mitigated, resulting in higher 
positioning accuracy. Notably, the proposed method delivers 
the best performance, which achieves approximately 41% and 
23% of improvement in horizontal positioning accuracy (95%) 
compared to the regular TC method and AIME-TC method, 
respectively. The improvement is primarily attributed to the 
adoption of a more stringent quality control strategy, namely, 
a satellite is considered to be fault-free only if it maintains 
favorable observation conditions throughout the entire sliding 
window. Table III presents the average number of satellites 
observed in each case, as well as the average number of 
satellites retained after applying the proposed method. Since 
the employed equipment records observations only from GPS, 

BDS, and QZSS, the average number of visible satellites is 
approximately 12.5. The number of visible satellites in S2 is 
obviously lower than that in S1 and S3, which is consistent 
with the surrounding environment shown in Fig. 3. After 
applying the proposed method, the average number of retained 
satellites decreases to approximately 3.6, which indicates that 
most faulty satellites can be excluded and explains the reasons 
for the performance improvement. 

VI. DISCUSSION 
As shown in Fig. 6 and Table II, the proposed method 

achieves the best positioning performance among all evaluated 
approaches. Nevertheless, several aspects of the proposed 
algorithm merit further discussions. 

TABLE IV 
DURATION FOR EACH TEST AND THE VALID POSITIONING TIME FOR SPP AND OPT (UNIT: S) 

 S1 S2 S3 

 Duration SPP OPT Duration SPP OPT Duration SPP OPT 

case1 910 908 891 897 894 720 1077 1068 948 

case2 951 949 932 892 889 779 1027 1024 960 

case3 914 914 898 846 837 712 1118 1117 1040 

Mean 925.0  923.7  907.0  878.3  873.3  737.0  1074.0  1069.7  982.7  

 
First, the state vector of the proposed optimization 

algorithm includes seven parameters that need to be estimated, 
which implies that a sufficient number of visible satellites 
within the sliding window is necessary. Table IV summarizes 
the data collection duration for each case across the three 
scenarios, along with the number of positioning results 
provided by SPP and OPT. It is found that OPT in S2 
demonstrates the worst performance, with approximately 16% 
of results failing to converge. As illustrated in Table III, the 
average number of visible satellites in S2 is approximately 9.4, 
which is obviously lower than that in S1 and S3. Therefore, 
environmental factors are the main cause of this degradation. 
In instances where the optimization algorithm fails to 
converge, the proposed method automatically falls back to the 
conventional RKF. Nevertheless, such non-convergence 
events are relatively rare and constitute only a small portion of 
the overall dataset. In more extreme cases, GNSS signals may 
be completely blocked in certain areas, but the GNSS/INS 
integrated system can still work properly by using the 
pedestrian motion constraint, which further demonstrates the 
advantages of the proposed method in positioning integrity. 

Second, the size of the sliding window is also a critical 
factor influencing positioning performance. On the one hand, 
if the window size is too short, some errors cannot be 
effectively identified. For example, variations of SGEs are 
typically small and may not be detected within a short time 
window using (18). On the other hand, as time progresses, the 

accuracy of the PDR trajectory cannot be guaranteed. 
Moreover, if the window size is too long, it becomes 
increasingly challenging for one satellite to maintain favorable 
observation conditions in complex urban environments, 
causing most satellites are discarded. As the number of usable 
satellites decreases significantly, positioning performance will 
also decrease to a certain extent. The average horizontal 
position errors for the proposed method with different window 
size are presented in Table V. It can be observed that both 
shorter and longer windows lead to performance degradation. 
Finally, 20-second window size is adopted in this paper. 

TABLE V 
AVERAGE HORIZONTAL POSITION ERRORS FOR THE PROPOSED 

METHODS WITH DIFFERENT WINDOW SIZE (UNIT: M) 

Window Size RMS 68% 95% 

10s 6.94 6.09 14.04 

15s 5.42 5.22 10.97 

20s 5.05 4.81 10.21 

25s 8.28 6.18 17.37 

30s 21.40 20.56 37.95 

 
Third, the 20-second window also has inherent limitations. 

Since the pedestrian moves in a slow velocity, multipath 
effects or NLOS reflections may remain relatively stable 
within the sliding window. As a result, the spatial consistency 
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check may be ineffective, and Fig. 7 illustrates this 
phenomenon. In Fig. 7, the double-differenced (DD) 
pseudorange residuals of case1 within S3 are demonstrated. 
The red dots represent the DD residuals for all satellites, while 
the blue dots correspond to that of the retained satellites. It is 
observed that the proposed method effectively filters out the 
majority of GNSS outliers. However, fewer anomalies still 
exist, which are highlighted by the black circles. This issue is 
primarily attributed to the ineffectiveness of the spatial 
consistency check, but such instances are relatively rare across 
the entire dataset. Additionally, a period of missing results is 
highlighted with a green circle in Fig. 7. During this time, the 
tester remained stationary while waiting for the traffic light, so 
no steps were detected. In the sliding window, if the number 
of detected steps or the length of PDR trajectory falls below 
the certain thresholds, the optimized results will not be 
obtained. 

 
Fig. 7. Double-differenced pseudorange residuals for all 
satellites (red dot) and the retained satellites (blue dot) in 
case1 of S3. 
 

 
Fig. 8. Processing time of the conventional RKF and the 
proposed method. 
 

Finally, the processing time of the conventional RKF and 
the proposed method is shown in Fig. 8, and the duration 
statistics for each test are summarized in Table IV. On a 
laptop, the average processing time of the conventional RKF 

is approximately 4.9 s. After incorporating the optimization 
algorithm, the average processing time increases to 8.6 s, 
which does not represent a significant increase. The proposed 
method improves positioning accuracy while maintaining 
computational efficiency, making it suitable for real-time 
operation on wearable devices such as smartwatches. 

VII. CONCLUSION 
This paper proposes a robust GNSS/INS integrated system 

for pedestrian navigation in urban environments based on 
spatial consistency check. Compared to the classical RKF, two 
additional steps are introduced. First, an optimization 
algorithm is employed to process the PDR trajectory and 
multi-epoch GNSS observations. Then, the optimized results 
are used for GNSS outlier detections through a spatial 
consistency check. On the one hand, the proposed method 
combines the advantages of both KF-based and optimization-
based approaches. On the other hand, the optimization 
problem defined in this paper only requires several parameters 
to be estimated, resulting in lower computational load. It 
makes the proposed method well-suited for implementation on 
smart devices and provides a novel solution for pedestrian 
navigation in complex urban environments. 

To validate the performance of the proposed method, nine 
sets of test data were collected covering three typical urban 
scenarios. To demonstrate the superiority of the proposed 
method, five different positioning solutions are evaluated. The 
mean 95% position error of the commercial u-blox module is 
34.76 m, which is the worst among other methods. In addition, 
that of the optimization algorithm is 13.72 m, which performs 
slightly better than the conventional RKF (17.27 m). 
Moreover, the AIME enhanced method is capable of detecting 
SGEs, which effectively suppresses trajectory drift and 
improves the horizontal positioning accuracy to 13.32 m 
(95%). The proposed method employs a more rigorous quality 
control strategy and delivers the best performance, achieving 
the mean 95% of 10.21 m, which represents an improvement 
of approximately 41% and 23% compared to the conventional 
RKF and AIME enhanced method, respectively. 

For future works, three points might be considered. First, 
more advanced strategies could be integrated into the 
optimization algorithm to further enhance its robustness. It is 
also worth comparing the proposed method with the sliding-
window-based FGO approach to evaluate its effectiveness in 
GNSS outlier detection and computational load. Second, the 
performance of the proposed algorithm under different motion 
states and usage conditions should be further investigated, 
particularly in scenarios where the PDR performance 
degrades. Third, the proposed solution could be implemented 
on commercial devices, such as smartphone and smartwatch. 
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